共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention. 相似文献
2.
Alex Slavenko Anat Feldman Allen Allison Aaron M. Bauer Monika Bhm Laurent Chirio Guarino R. Colli Indraneil Das Tiffany M. Doan Matthew LeBreton Marcio Martins Danny Meirte Zoltn T. Nagy Cristiano de C. Nogueira Olivier S. G. Pauwels Daniel Pincheira‐Donoso Uri Roll Philipp Wagner Yuezhao Wang Shai Meiri 《Global Ecology and Biogeography》2019,28(4):471-483
3.
Aim We explore geographic variation in body size within the wingless grasshopper, Phaulacridium vittatum, along a latitudinal gradient, and ask whether melanism can help explain the existence of clinal variation. We test the hypotheses that both male and female grasshoppers will be larger and lighter in colour at lower latitudes, and that reflectance and size will be positively correlated, as predicted by biophysical theory. We then test the hypothesis that variability in size and reflectance is thermally driven, by assessing correlations with temperature and other climatic variables. Location Sixty‐one populations were sampled along the east coast of Australia between latitudes 27.63° S and 43.10° S, at elevations ranging from 10 to 2000 m a.s.l. Methods Average reflectance was used as a measure of melanism and femur length as an index of body size for 198 adult grasshoppers. Climate variables were generated by BIOCLIM for each collection locality. Hierarchical partitioning was used to identify those variables with the most independent influence on grasshopper size and reflectance. Results Overall, there was no simple relationship between size and latitude in P. vittatum. Female body size decreased significantly with latitude, while male body size was largest at intermediate latitudes. Rainfall was the most important climatic variable associated with body size of both males and females. Female body size was also associated with radiation seasonality and male body size with reflectance. The reflectance of females was not correlated with latitude or body size, while male reflectance was significantly higher at intermediate latitudes and positively correlated with body size. Analyses of climate variables showed no significant association with male reflectance, while female reflectance was significantly related to the mean temperature of the driest quarter. Main conclusions Geographic variation in the body size of the wingless grasshopper is best explained in terms of rainfall and radiation seasonality, rather than temperature. However, melanism is also a significant influence on body size in male grasshoppers, suggesting that thermal fitness does play a role in determining adaptive responses to local conditions in this sex. 相似文献
4.
José Alexandre Felizola Diniz‐Filho Miguel Ángel Rodríguez Luis Mauricio Bini Miguel Ángel Olalla‐Tarraga Marcel Cardillo João Carlos Nabout Joaquín Hortal Bradford A. Hawkins 《Journal of Biogeography》2009,36(12):2222-2236
Aim One of the longest recognized patterns in macroecology, Bergmann’s rule, describes the tendency for homeothermic animals to have larger body sizes in cooler climates than their phylogenetic relatives in warmer climates. Here we provide an integrative process‐based explanation for Bergmann’s rule at the global scale for the mammal order Carnivora. Location Global. Methods Our database comprises the body sizes of 209 species of extant terrestrial Carnivora, which were analysed using phylogenetic autocorrelation and phylogenetic eigenvector regression. The interspecific variation in body size was partitioned into phylogenetic (P) and specific (S) components, and mean P‐ and S‐components across species were correlated with environmental variables and human occupation both globally and for regions glaciated or not during the last Ice Age. Results Three‐quarters of the variation in body size can be explained by phylogenetic relationships among species, and the geographical pattern of mean values of the P‐component is the opposite of the pattern predicted by Bergmann’s rule. Partial regression revealed that at least 43% of global variation in the mean phylogenetic component is explained by current environmental factors. In contrast, the mean S‐component of body size shows large positive deviations from ancestors across the Holarctic, and negative deviations in southern South America, the Sahara Desert, and tropical Asia. There is a moderately strong relationship between the human footprint and body size in glaciated regions, explaining 19% of the variance of the mean P‐component. The relationship with the human footprint and the P‐component is much weaker in the rest of the world, and there is no relationship between human footprint and S‐component in any region. Main conclusions Bergmannian clines are stronger at higher latitudes in the Northern Hemisphere because of the continuous alternation of glacial–interglacial cycles throughout the late Pliocene and Pleistocene, which generated increased species turnover, differential colonization and more intense adaptive processes soon after glaciated areas became exposed. Our analyses provide a unified explanation for an adaptive Bergmann’s rule within species and for an interspecific trend towards larger body sizes in assemblages resulting from historical changes in climate and contemporary human impacts. 相似文献
5.
Spatial variation in the pattern of natural selection can promote local adaptation and genetic differentiation between populations. Because heritable melanin‐based ornaments can signal resistance to environmentally mediated elevation in glucocorticoids, to oxidative stress and parasites, populations may vary in the mean degree of melanic coloration if selection on these phenotypic aspects varies geographically. Within a population of Swiss barn owls (Tyto alba), the size of eumelanic spots is positively associated with survival, immunity and resistance to stress, but it is yet unknown whether Tyto species that face stressful environments evolved towards a darker eumelanic plumage. Because selection regimes vary along environmental gradients, we examined whether melanin‐based traits vary clinally and are expressed to a larger extent in the tropics where parasites are more abundant than in temperate zones. To this end, we considered 39 barn owl species distributed worldwide. Barn owl species living in the tropics displayed larger eumelanic spots than those found in temperate zones. This was, however, verified in the northern hemisphere only. Parasites being particularly abundant in the tropics, they may promote the evolution of darker eumelanic ornaments. 相似文献
6.
观察中国不同区域内现代人群四肢形态变化是否与艾伦法则相一致。本文搜集中国各区域102处地点的现代人群上、下肢测量性状中17项指标,探讨其与温度(年平均温度、年最高温度、年最低温度和气温年较差)间的线性关系。结果表明,随着环境温度降低,中国现代人的上肢相对长度逐渐变短,前臂和手则逐渐增粗;下肢(下肢全长、大腿长和小腿长)逐渐变长,且下肢相对长度同样渐增。手长、手宽、上臂围和前臂围与气温年较差呈正相关,而身高上肢长指数与气温年较差呈负相关;下肢全长、大腿长、足长和小腿围与气温年较差呈正相关。环境温度作为一项选择性压力,作用于上肢发育或形态塑造过程的显著程度上要高于下肢。中国现代人群的四肢形态变化规律并不完全符合艾伦法则,可能与遗传、地理环境、功能性需求、生存策略和营养等因素共同影响现代人群的四肢发育密切相关。 相似文献
7.
Abstract: Body size is a common focus of macroevolutionary, macroecological and palaeontological investigations. Here, we document body‐size evolution in 19 species‐level ostracod lineages from the deep Indian Ocean (Deep Sea Drilling Program Site 253) over the past 40 myr. Body‐size trajectories vary across taxa and time intervals, but most lineages (16/19) show net gains in body size. Because many modern ostracod taxa are larger in colder parts of their geographical range, we compared the timing and magnitude of these size changes to established Cenozoic deep‐water cooling patterns confirmed through δ18O measurements of benthic foraminifera in the samples studied. These data show a significant negative correlation between size changes and temperature changes (ostracods get larger as temperatures get colder), and that systematic size increases only occur during intervals of sustained cooling. In addition, statistical support for an explicit temperature‐tracking model exceeds that of purely directional evolution. We argue that this Cope’s Rule pattern is driven by secular changes in the environment, rather than any universal or intrinsic advantages to larger body sizes, and we note some difficulties in the attempts to link Cope’s Rule to observations made within a single generation. 相似文献
8.
9.
Geomyoid rodents provide a great study system for the analysis of sexual dimorphism. They are polygynic and many inhabit harsh arid environments thought to promote sexual dimorphism. In fact, there has been extensive work published on the sexual size dimorphism of individual populations and species within this rodent clade. However, little work has been undertaken to assess the evolutionary patterns and processes associated with this sexual dimorphism. We use multivariate analyses of cranial measurements in a phylogenetic framework to determine the distribution of size and shape dimorphism among geomyoids and test for Rensch’s rule. Our results suggest that sexual dimorphism is more common in geomyids than heteromyids, but it is not in fact universal. There is evidence for variation in sexual dimorphism across populations. Additionally, in many taxa, geographic variation appears to overwhelm existing sexual dimorphism. We find support for the repeated independent evolution of shape and size dimorphism across geomyoid taxa, but we do not find support for an association between size and shape dimorphism. There is no evidence for Rensch’s rule in geomyoids, whether at the superfamily or family level. Together, our findings suggest that there is no single explanation for the evolution of sexual dimorphism in geomyoids and that, instead, it is the product of numerous evolutionary events. Future studies incorporating phylogenetic relationships will be necessary to paint a more complete picture of the evolution of sexual dimorphism in geomyoids. 相似文献
10.
Using museum data of adult specimens whose sex, age, and locality are known, we studied temporal and geographical body size trends among the otter, Lutra lutra, in Norway. We found that body size of the otters increased during the last quarter of the twentieth century, and suggest that this trend is related to increased food availability from fish farming and possibly also to energy saving due to elevated sea temperatures. Birth year and death year explained 38.8 and 43.5%, respectively, of the variation in body size. Body size of otters was positively related to latitude, thus conforming to Bergmann’s rule. 相似文献
11.
Pursuant to his major research interest in the cultural ecology of hunter-gatherers, Birdsell collected an unparalleled body of phenotypic data on Aboriginal Australians during the mid twentieth century. Birdsell did not explicitly relate the geographic patterning in his data to Australia's climatic variation, instead arguing that the observable differences between groups reflect multiple origins of Australian Aborigines. In this article, bivariate correlation and multivariate analyses demonstrate statistically significant associations between climatic variables and the body build of Australians that are consistent with the theoretical expectations of Bergmann's and Allen's rules. While Australian Aborigines in comparison to Eurasian and New World populations can be generally described as long-headed, linear in build, and characterized by elongated distal limbs, the variation in this morphological pattern across the continent evidently reflects biological adaptation to local Holocene climates. These results add to a growing body of evidence for the role of environmental selection in the development of modern human variation. 相似文献
12.
Aim The patterns and causes of ecogeographical body size variation in ectotherms remain controversial. In amphibians, recent genetic studies are leading to the discovery of many cryptic species. We analysed the relationships between body size and climate for a salamander (Salamandrina) that was recently separated into two sibling species, to evaluate how ignoring interspecific and intraspecific genetic structure may affect the conclusions of ecogeographical studies. We also considered the potential effects of factors acting at a local scale. Location Thirty‐four populations covering the whole range of Salamandrina, which is endemic to peninsular Italy. Methods We pooled original data and data from the literature to obtain information on the snout–vent length (SVL) of 3850 Salamandrina females; we obtained high‐resolution climatic data from the sampled localities. We used an information‐theoretic approach to evaluate the roles of climate, genetic features (mitochondrial haplogroup identity) and characteristics of aquatic oviposition sites. We repeated our analyses three times: in the first analysis we ignored genetic data on intraspecific and interspecific variation; in the second one we considered the recently discovered differences between the two sibling species; in the third one we included information on intraspecific genetic structure within Salamandrina perspicillata (for Salamandrina terdigitata the sample size was too small to perform intraspecific analyses). Results If genetic information was ignored, our analysis suggested the existence of a relationship between SVL and climatic variables, with populations of large body size in areas with high precipitation and high thermal range. If species identity was included in the analysis, the role of climatic features was much weaker. When intraspecific genetic differences were also considered, no climatic feature had an effect. In all analyses, local factors were important and explained a large proportion of the variation; populations spawning in still water had a larger body size. Main conclusions An imperfect knowledge of species boundaries, or overlooking the intraspecific genetic variation can strongly affect the results of analyses of body size variation. Furthermore, local factors can be more important than the large‐scale parameters traditionally considered, particularly in species with a small range. 相似文献
13.
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein. 相似文献
14.
1. In most birds and mammals, larger individuals of the same species tend to be found at higher latitudes, but in insects, body size–latitude relationships are highly variable. 2. Recent studies have shown that larger‐bodied insect species are more likely to decrease in size when reared at increased temperature, compared with smaller‐sized species. These findings have led to the prediction that a positive relationship between body size and latitude should be more prevalent in larger‐bodied insect species. 3. This study measured the body size of > 4000 beetle specimens (12 species) collected throughout North America. Some beetle species increased in size with latitude, while others decreased. Importantly, mean species body size explained c. 30% of the interspecific variation in the size–latitude response. 4. As predicted, larger‐bodied beetle species were more likely to show a positive relationship between body size and latitude (Bergmann's rule), and smaller‐bodied species were more likely to show a negative body size–latitude relationship (inverse Bergmann's rule). 5. These body size–latitude patterns suggest that size‐specific responses to temperature may underlie global latitudinal distributions of body size in Coleoptera, as well as other insects. 相似文献
15.
Ccilia Spitzweg Margaretha D. Hofmeyr Uwe Fritz Melita Vamberger 《Zoologica scripta》2019,48(1):57-68
In contrast to mammals, little is known about the phylogeographic structuring of widely distributed African reptile species. With the present study, we contribute data for the leopard tortoise (Stigmochelys pardalis). It ranges from the Horn of Africa southward to South Africa and westwards to southern Angola. However, its natural occurrence is disputed for some southern regions. To clarify the situation, we used mtDNA sequences and 14 microsatellite loci from 204 individuals mainly from southern Africa. Our results retrieved five mitochondrial clades; one in the south and two in the north‐west and north‐east of southern Africa, respectively, plus two distributed further north. Using microsatellites, the southern clade matched with a well‐defined southern nuclear cluster, whilst the two northern clades from southern Africa corresponded to another nuclear cluster with three subclusters. One subcluster had a western and central distribution, another occurred mostly in the north‐east, and the third in a small eastern region (Maputaland), which forms part of a biodiversity hotspot. Genetic diversity was low in the south and high in the north of our study region, particularly in the north‐east. Our results refuted that translocations influenced the genetic structure of leopard tortoises substantially. We propose that Pleistocene climatic fluctuations caused leopard tortoises to retract to distinct refugia in southern and northern regions and ascribe the high genetic diversity in the north of southern Africa to genetic structuring caused by the survival in three refuges and subsequent admixture, whereas tortoises in the south seem to have survived in only one continuous coastal refuge. 相似文献
16.
Anna Oczkowska Wojciech Kozubski Margarita Lianeri Jolanta Dorszewska 《Current Genomics》2014,15(1):18-27
Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington''s disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson''s disease. 相似文献
17.
Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio’s high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron. 相似文献
18.
We examine the basis of Darwin’s corollary to Haldane’s rule, which describes viability and fertility differences between F1 produced from reciprocal crosses. We analyzed asymmetries in hybrid viability from >100 reciprocal crosses involving 36 toad species to test whether relatively high rates of mitochondrial vs. nuclear evolution produce dams with systematically less viable F1 hybrid progeny. We find no such effect, suggesting a predominant role for stochastic accumulation of asymmetric epistatic incompatibilities. 相似文献
19.