首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant and Soil - The current study investigated the potential influence of Enterobacter sp. FM-1 on plant growth and the accumulation of Cd and Pb in plants growing in highly contaminated soils....  相似文献   

2.

Background and aims

As low initial uptake and essentially zero later uptake limit efficacy of N fertilization for temperate conifers, we investigated factors limiting long-term tree uptake of residual 15?N-labeled fertilizer.

Methods

We used a pot bioassay to assess availability of 15?N from soil sampled 10 years after fertilization of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand with 15?N-urea (200 kg N ha?1). Douglas-fir seedlings were grown for 2 years in organic (designated LFH) and mineral soil (0–10 cm) layers reconstructed from control and fertilized plots; residual fertilizer N amounted to 10 % of LHF and 5 % of MIN N.

Results

Percentage recovery of residual 15?N in seedlings was not affected by the original season of fertilization (spring vs. fall), but differed by the source of 15?N excess. LFH was a better source of residual 15?N; 12.4 % of residual LFH 15?N was taken up by seedlings and 7.6 % transferred to soil, whereas mineral soil yielded only 8.3 % of residual 15?N to seedling uptake and 2.4 % to LFH. Extractable inorganic N was 2–3 orders of magnitude higher in fallow pots.

Conclusions

Ten-year residual fertilizer 15?N was clearly cycling between LFH and mineral soil and available to seedlings, indicating that other factors such as denitrification, leaching, and asynchrony of soil N mineralization and tree uptake limit long-term residual N fertilizer uptake in the field.  相似文献   

3.

Background and aims

We examined changes in soil organic matter arising from conversion of a 45-year old pasture to a 10 yr. old native tree plantation in Panamá, to evaluate the effect of monoculture and mixtures.

Methods

We intensively sampled the soil 0–10 cm depth in the pasture in 2001 and in 22 plantation plots in 2011, ranging from 5 monocultures to 3- and 6-species treatments; samples were also taken from an undisturbed forest site. Soil analyses included organic carbon (SOC) and δ13C.

Results

Conversion of the pasture to tree plantation resulted in an overall loss of SOC of 0.6 kg m?2 (18%) in the top 10 cm, but neither tree species nor diversity had a significant effect. End-member δ13C values suggested that the contribution of C3 plants to SOC was increased from 26% in the pasture to 55% after 10 years of plantation and SOC turnover times were calculated to be 21–36 yr.

Conclusions

The magnitude of the loss in soil SOC is smaller than the increases in tree biomass (~3 kg C m?2) and litter (~0.3 kg C m?2) in the plantation, but still a significant part of the ecosystem C balance.
  相似文献   

4.
5.
Thallium is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants grown in Tl-contaminated soils. Thallium is also a precious metal nearly as economically valuable as gold. Thallium is efficiently hyperaccumulated in Iberis intermedia as aqueous Tl(I) with highest concentrations within the vascular network of leaves. In this study we examine the utility of synchrotron X-ray differential absorption-edge computed microtomography (CMT) in determining the distribution and compartmentalization of thallium (Tl) in Iberis intermedia. We found Tl to be distributed in solution throughout the vascular system of I. intermedia. Current laboratory experiments are examining the characteristics and potential recovery of Tl by I. intermedia with the objectives to remediate its toxic risks and to facilitate its reclamation for reuse. However, the recovery and reuse of Tl from I. intermedia by way of phytomining requires knowledge on the speciation, distribution and compartmentalization of thallium. CMT shows great promise for application in a wide variety of metal-related structural issues due to its high 3D resolution and being a non-destructive analysis tool. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users. An erratum to this article can be found at  相似文献   

6.
The fate and availability of P derived from granular fertilisers in an alkaline Calcarosol soil were examined in a 65-year field trial in a semi-arid environment (annual rainfall 325 mm). Sequential P fractionation was conducted in the soils collected from the trial plots receiving 0–12 kg P ha−1crop−1, and the rhizosphere soil after growing wheat (Triticum aestivum L. cv. Yitpi) and chickpea (Cicer arietinum L. cv. Genesis 836) for one or two 60-day cycles in the glasshouse. Increasing long-term P application rate over 65 years significantly increased all inorganic P (Pi) fractions except HCl–Pi. By contrast, P application did not affect or tended to decrease organic P (Po) fractions. Increasing P application also increased Olsen-P and resin-P but decreased the P buffer capacity and sorption maxima. Residual P, Pi and Po fractions accounted for an average of 32, 16 and 52% of total P, respectively. All soil P fractions including residual P in the rhizosphere soil declined following 60-day growth of either wheat or chickpea. The decreases were greater in soils with a history of high P application than low P. An exception was water-extractable Po, which increased following plant growth. Changes in various P fractions in the rhizosphere followed the same pattern for both plant species. Biomass production and P uptake of the plants grown in the glasshouse correlated positively with the residual P and inorganic fractions (except HCl–Pi) but negatively with Po in the H2O-, NaOH- and H2SO4-fractions of the original soils. The results suggest that the long-term application of fertiliser P to the calcareous sandy soil built up residual P and non-labile Pi fractions, but these P fractions are potentially available to crops.  相似文献   

7.
Rola  Kaja  Plášek  Vítězslav  Rożek  Katarzyna  Zubek  Szymon 《Plant and Soil》2021,466(1-2):613-630
Plant and Soil - Overstorey tree species influence both soil properties and microclimate conditions in the forest floor, which in turn can induce changes in ground bryophyte communities. The aim of...  相似文献   

8.
We explored the relationship between soil processes, estimated through soil respiration (R soil ), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in R soil in a tropical forest. The influence of tree size was examined using an index (I c ) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between I c and litterfall, root mass and R soil , respectively. Strong significant relationships were found between I c and both litterfall and root mass. R soil showed a large range of variations over the 1-ha experimental plot, from 1.5 to 12.6 gC m?2 d?1. The best relationship between I c and R soil only explained 17% of the spatial variation in R soil . These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution–which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1.30 m above ground level or at 0.5 m above the buttresses)–in explaining spatial variations in R soil .  相似文献   

9.
Question: In a southern temperate rain forest, we addressed three questions: (1) Does the abundance of climbing plants increase with light availability? (2) Do host tree species differ in their susceptibility to vine infestation? (3) How does the relationship between host tree trunk diameter and relative abundance of vines vary with their climbing mechanism? Location: Two sites in the temperate evergreen rain forest of southern Chile: Puyehue (40°39′S, 72°09′W; 350 m a.s.l.) and Pastahue (42°22′S, 73°49′W; 285 m a.s.l.). Methods: We sampled vines in 60 25‐m2 plots, with 20 plots in each of three light environments: mature forest, forest edges and canopy gaps. In each plot, for every tree ≥1.50‐m tall of any diameter we counted and identified all climbing plant individuals at a height of 1.30 m. We also counted, measured (trunk diameter at 1.30 m) and identified all these trees, and determined prevalence of vine infestation for each tree species. Results: Light availability in forest plots did not affect vine abundance when the number and size of host trees was taken into account. Overall, vine abundance increased with host tree trunk diameter. Tree species did not differ in the prevalence of vine infestation. The relative abundance of stem twiners and adhesive climbers decreased and increased with trunk diameter, respectively. The densities of stem twiners and adhesive climbers were negatively correlated across the forest. Conclusion: We provide further evidence that the pattern of vine abundance is independent of light availability in southern temperate rain forests, in contrast to results commonly reported for tropical rain forests. We also show that support suitability across the forest varies with the mechanism by which vines climb, probably due in part to biomechanical constraints and in part to vine interspecific competition, a virtually unexplored ecological factor.  相似文献   

10.
Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing to sustainable plant production, ecosystem restoration, and soil carbon sequestration and hence mitigation of global climate change. As both biochar and mycorrhizal associations are subject to management, understanding and exploiting interactions between them could be advantageous. Here we focus on biochar effects on mycorrhizal associations. After reviewing the experimental evidence for such effects, we critically examine hypotheses pertaining to four mechanisms by which biochar could influence mycorrhizal abundance and/or functioning. These mechanisms are (in decreasing order of currently available evidence supporting them): (a) alteration of soil physico-chemical properties; (b) indirect effects on mycorrhizae through effects on other soil microbes; (c) plant–fungus signaling interference and detoxification of allelochemicals on biochar; and (d) provision of refugia from fungal grazers. We provide a roadmap for research aimed at testing these mechanistic hypotheses.  相似文献   

11.
To quantify the effects of soil temperature (Tsoil), and relative soil water content (RSWC) on soil N2O emission we measured N2O soil efflux with a closed dynamic chamber in situ in the field and from soil cores in a controlled climate chamber experiment. Additionally we analysed the effect of soil acidity, ammonium, and nitrate concentration in the field. The analysis was performed on three meadows, two bare soils and in one forest. We identified soil water content, soil temperature, soil nitrogen content, and pH as the main parameters influencing soil N2O emission. The response of N2O emission to soil temperature and relative soil water content was analysed for the field and climate chamber measurements. A non-linear regression model (DenNit) was developed for the field data to describe soil N2O efflux as a function of soil temperature, soil moisture, pH value, and ammonium and nitrate concentration. The model could explain 81% of the variability in soil N2O emission of all individual field measurements, except for data with short-term soil water changes, namely during and up to 2 h after rain stopped. We validated the model with an independent dataset. For this additional meadow site 73% of the flux variation could be explained with the model.  相似文献   

12.
The influence of pre-industrial animal husbandry on the boreal forest in south-central Sweden has been studied by pollen and charcoal analyses of peat profiles from two mires in the vicinity of a shieling site. The impact of farming on the local vegetation development is demonstrated from cal. A. D. 1300–1500 in three ways: forest clearance and cultivation of cereals at the local shieling site; alterations of hydrology and vegetation, such as an increase in Cyperaceae, at mires used for hay production; changes in the composition in the surrounding forest, with decreasing proportions of Betula, Picea and boreo-nemoral broadleaved trees and a consequent increase in Pinus, due to grazing and a change of fire regime. Similar alterations to the forest vegetation are noted at other sites in central and northern Sweden during the last thousand years, when the system of using shielings became more widespread. Hence, early animal husbandry is demonstrated to have had a regional impact on the long-term boreal forest development, replacing the original mixed deciduous-coniferous forest with Pinus dominated forest. Received November 27, 2001 / Accepted June 20, 2002 Correspondence to: Marie Emanuelsson  相似文献   

13.

Key message

Carbon isotope ratios in growth rings of a tropical tree species show that treefall gaps stimulate diameter growth mainly through changes in the availability of light and not water. The formation of treefall gaps in closed canopy forests usually entails considerable increases in light and nutrient availability for remaining trees, as well as altered plant water availability, and is considered to play a key role in tree demography. The effects of gaps on tree growth are highly variable and while usually stimulatory they may also include growth reductions. In most studies, the causes of changes in tree growth rates after gap formation remain unknown. We used changes in carbon isotope 13C discrimination (Δ13C) in annual growth rings to understand growth responses after gap formation of Peltogyne cf. heterophylla, in a moist forest of Northern Bolivia. We compared growth and Δ13C of the 7 years before and after gap formation. Forty-two trees of different sizes were studied, half of which grew close (<10 m) to single treefall gaps (gap trees), the other half more than 40 m away from gaps (controls). We found variable responses among gap trees in growth and Δ13C. Increased growth was mainly associated with decreased Δ13C, suggesting that the growth response was driven by increased light availability, possibly in combination with improved nutrient availability. Most trees showing zero or negative growth change after gap formation had increased Δ13C, suggesting that increased water stress did not play a role, but rather that light conditions had not changed much or nutrient availability was insufficient to support increased growth. Combining growth rates with Δ13C proved to be a valuable tool to identify the causes of temporal variation in tree growth.  相似文献   

14.
In the present study, we analysed the habitat association of tree species in an old‐growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6‐ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10‐m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well‐scattered seed distribution via wind and bird dispersal, as well as conspecific density‐dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study.  相似文献   

15.
16.
17.
18.
Freshwater biodiversity underlies severe threats, mainly suffering from habitat degradation by anthropogenic land use, in particular by urbanisation. However, recent long-term studies indicate recovery of stream macroinvertebrate diversity due to improved water quality at least in North America and Europe. We monitored macroinverbrates at 56 urban stream sites over a 12-year period (2009–2020) in Braunschweig, a German urban district. We utilised these data to investigate spatio-temporal changes in taxon richness and assemblage structure as well as factors potentially affecting the resulting patterns. Overall taxon richness was increasing over the study period, comprising both all taxa and taxa being indicators for healthy stream conditions. 53.6% of the sites had significant positive trends becoming most eminent since 2014, despite decelerating since 2018, the beginning of an extra-ordinary dry period. Only 10.7% of the study sites had negative trends. Assemblage structure was shaped by environmental factors like stream width and water quality. Over-average taxon richness including positive trends and higher numbers of indicator taxa of healthy stream conditions was found in streams with higher flow velocity, good saprobic conditions and more natural streambed structure. In contrast, low taxon richness and predominance of tolerant taxa were found in streams with more degraded conditions. Most of the environmental conditions having positive effects on taxon richness were improved by various programs set up by the environmental authorities. We therefore conclude, if urban stressors like organic pollution and structural degradation can be mitigated by revitalisation and water quality improvement, urban streams can have good potential for increasing biodiversity and improving ecological functioning.  相似文献   

19.
Calcium (Ca)-rich food can increase feeding of Lumbricidae. Earthworms can be genetically differentiated at a small spatial scale and acclimatize to the local environment during growth. Soil feeding and subsequent cast production by earthworms affects soil N mineralization. Here, we hypothesized that soil feeding and subsequent cast production by Lumbricidae species increases with high soil Ca content and that this increase is stronger in worms from high-Ca soil. We also hypothesized that changes in the soil feeding of Lumbricidae species along with the Ca content affects the soil N mineralization via changes in the cast production. Using a geophageous earthworm species (Eisenia japonica) originated from two different Ca environments (calcareous soil and sedimentary soil), we investigated cast production and soil N mineralization in three soils (sedimentary soil, sedimentary soil with Ca addition, and calcareous soil). The soil feeding of E. japonica from both origins did not always increase despite the high soil Ca content. We suggest that both the Ca content and other soil conditions (e.g., soil C:N) might be major factors in increasing soil feeding by E. japonica. Furthermore, the influence of Ca addition on cast production varied according to the earthworm origin. As expected, these differences in cast production are linked to soil N mineralization (especially nitrification). In summary, our study suggests that the acclimatization and/or adaptation of Lumbricidae species to local environmental factors not only soil Ca content explains spatially heterogeneous soil N mineralization in forest soil.  相似文献   

20.

Background and aims

Soil acidification is known to be one of the constraints of tree growth; however, it is unclear how it affects tree growth at photosynthesis level (i.e., through affecting stomatal conductance vs. carboxylation rate) during the growth of trees. This paper studied the effects of soil acidification on Pinus densiflora foliar chemistry and tree ring C isotope ratio (13C/12C, expressed as δ13C) and their relationship with tree growth.

Methods

Tree growth (diameter, annual growth ring area, and root biomass), soil chemistry (pH, mineral N, and exchangeable Ca and Al), foliage chemistry (N, Ca/Al, and δ13C), and tree ring δ13C in P. densiflora stands along a soil pH gradient (from 4.38 to 4.83, n?=?9) in southern Korea were investigated.

Results

Overall, trees with relatively poor growth under more acidic soil conditions (low pH and Ca/Al) had lower values of foliar N concentration and δ13C and tree ring δ13C, suggesting that restricted N uptake under more acidic soil conditions caused N limitation for photosynthesis, leading to poor tree growth. In addition, relationships between mean annual area increment and carbon isotope discrimination of tree rings at five-yr intervals from 1968 to 2007 revealed that the impact of soil acidification on tree growth became severer during the last 15 yrs as negative correlations between them became significant after 1993.

Conclusions

Reduced N uptake under acidic soil conditions resulted in lower radial growth of P. densiflora via non-stomatal limitation of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号