共查询到20条相似文献,搜索用时 10 毫秒
1.
Juan Gao Yanbo Hu Yue Meng Fanlin Meng Xiaoqing Guo Nan Wang 《Biocatalysis and Biotransformation》2015,33(1):51-60
A novel ginsenoside-hydrolyzing strain was isolated from ginseng-cultivation soil in Changbai Mountain (China). The strain was identified as Cellulosimicrobium sp. 21 by 16S rDNA sequencing. Using the β-glucosidases secreted from Cellulosimicrobium sp. 21, protopanaxatriol-type ginsenoside Re was converted to the highly active neuroprotective molecule (S)-Rg2 by removal of the C-20-glucopyranosyl residue. The α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranose at the C-6 position of Rg2 was not further attacked by Cellulosimicrobium sp. 21, so the transformation shows high specificity. To simplify the transformation and product-preparation process, a simple and efficient transformation system was developed in a phosphate buffer system instead of organic media. The optimum conditions for transforming ginsenoside Re into Rg2 by Cellulosimicrobium sp. 21 were determined through single-factor experiments and response surface methodology. Under the optimized conditions: transformation buffer, 50 mM phosphate buffer, at pH: 7.00; temperature: 27.6°C; substrate concentration: 0.50 mg/ml; biotransformation period: 12 h; the biotransformation efficiency reached 89.8% (molar ratio) in 2-L reaction system. This simple biotransformation with high specificity and efficiency has potential for use in Rg2 preparation in the pharmaceutical industry. 相似文献
2.
人参皂甙 Rb1与Re对大鼠缺血再灌注心肌细胞凋亡的影响 总被引:15,自引:0,他引:15
目的观察人参皂甙Rb1与Re对缺血再灌注心肌细胞凋亡的影响,并比较两者的效应差异.方法结扎Wistar大鼠左冠状动脉前降支,建立大鼠缺血再灌注动物模型;采用透射电镜、缺口末端标记法检测心肌凋亡细胞,利用光学显微镜进行细胞计数.结果 (1)透射电镜发现缺血再灌注组缺血区出现心肌凋亡细胞,假手术组未发现心肌凋亡细胞;(2)缺血再灌注组心肌细胞凋亡数为134.45±45.61个/视野,人参皂甙Rb1治疗组51.65±13.71个/视野,人参皂甙Re治疗组90.66±19.22个/视野,三组间有非常显著性差异(P<0.01).结论心肌缺血再灌注诱导心肌细胞凋亡,人参皂甙Rb1和Re均可显著减少缺血再灌注心肌细胞的凋亡.证实人参皂甙Rb1与Re均有抑制缺血再灌注心肌细胞凋亡,减轻心肌缺血再灌注损伤的作用;人参皂甙Rb1的抗心肌细胞凋亡作用较Re的效果为佳. 相似文献
3.
目的:目前尚无特效的防治慢性缺氧性认知功能障碍措施,前人的研究提示人参皂甙Rb1可能有上述功效,故本实验拟研究人参皂甙Rb1对大鼠慢性缺氧性认知功能障碍的治疗作用及其可能机制。方法:取雄性成年SD大鼠30只,随机分为对照组、模型组、人参皂甙Rb1(2 mg/kg·d)治疗组。采用Morris水迷宫行为学实验检测大鼠学习记忆功能,运用膜片钳技术在脑片水平检测海马的突出可塑性。结果:(1)模型组大鼠寻找平台潜伏期较对照组显著延长(P〈0.05),在目标象限的停留时间较对照组明显缩短(P〈0.05),人参皂甙Rb1治疗后,大鼠寻找平台潜伏期较模型组缩短(P〈0.05),在目标象限的停留时间较模型组延长(P〈0.05);(2)在高频强直刺激(HFS)作用下,各组均有长时程增强(LTP)现象,但模型组LTP较对照组明显减弱(P〈0.05),人参皂甙Rb1治疗后LTP明显增强(P〈0.05)。结论:人参皂甙Rbl减轻了慢性缺氧大鼠在水迷宫实验中的行为学改变,并增强了慢性缺氧大鼠海马LTP,证实人参皂甙Rbl可明显减轻大鼠慢性缺氧性认知功能障碍,该作用与其减轻海马LTP抑制有关,为高原缺氧性认知功能障碍的防治提供了新思路,但其具体机制尚有待于进一步研究,本室将在此基础上进一步深入研究人参皂甙Rbl改善慢性缺氧性认知功能障碍的机制。 相似文献
4.
Yuan-Yuan Liang Bin Wang Dong-Meng Qian Ling Li Zhi-Hao Wang Ming Hu Xu-Xia Song 《中国病毒学》2012,27(1):19-25
To investigate the inhibitory effects of Ginsenoside Rb1 (GRb1) on apoptosis caused by Herpes Simplex Virus-1 (HSV-1) in Human Glioma Cells (U251),U251 cells were infected by HSV-1 at a multiplicity of... 相似文献
5.
利用菌种黑根霉Rhizopus sp.对人参皂苷Re进行生物转化,并对人参皂苷Re及其发酵产物进行HPLC系统分析比较,经液相色谱-质谱分析得出人参皂苷Re转化率为92.16%,并制备出人参皂苷Re发酵产物中峰值升高的成分,转化后的人参皂苷发酵产物中化合物1确定为人参皂苷Rg2,化合物2为Rg2的同分异构体,得率为10.13%;化合物3和化合物4确定为人参皂苷Rg5/Rk1,得率为29.23%。从结果初步推测得出人参皂苷Re被黑根霉转化为人参皂苷Rg2的机理,人参皂苷Re转化成人参皂苷Rg5/Rk1的机理还有待于进一步研究。 相似文献
6.
目的探讨人参皂甙Rb1对化疗所致卵巢早衰(Premature ovarian failure,POF)大鼠的Bcl-2及Bax基因表达的影响。方法选用30只2-3月龄具有正常动情周期雌性Wistar大鼠随机分3组,分别为对照组,治疗组和模型组。采用免疫组化和免疫印迹方法分别观察和半定量检测POF大鼠卵巢凋亡调节基因Bcl-2和Bax的蛋白表达情况,同时对比观察人参皂甙Rb1对其表达的影响。结果模型组卵巢颗粒细胞Bax蛋白的平均光密度值较对照组明显增高(P0.05);模型组Bcl-2蛋白的表达量较对照组明显下调(P0.05)。Rb1治疗后Bcl-2蛋白表达明显升高,Bax蛋白表达明显下调(P0.05)。结论 Rb1可能是通过下调bax蛋白水平减少卵巢颗粒细胞的凋亡,对化疗所致卵巢早衰起到治疗的作用,进而延缓卵巢衰老。 相似文献
7.
Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype 下载免费PDF全文
Lei Qiao Xin‐yu Zhang Xiao‐ling Liu Mei Dong Hong‐yan Dai Mei Ni Xiao‐rong Luan Jun Guan Hui‐xia Lu 《Journal of cellular and molecular medicine》2018,22(1):409-416
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE?/? mice. In vitro, Rb1 treatment promoted the expression of arginase‐I (Arg‐I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin‐4 (IL‐4) and interleukin‐13 (IL‐13) secretion in supernatant and promoted STAT6 phosphorylation. IL‐4 and/or IL‐13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up‐regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP‐9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti‐inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL‐4 and/or IL‐13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis. 相似文献
8.
The further purification of the total saponins from the roots of Panax notoginseng (Burk.) F. H. Chen by ordinary and reversed-phase silica-gel, as well as Sephadex LH-20 chromatography afforded two adjuvant active dammarane-type saponins, ginsenoside Re (1) and notoginsenoside R1 (2). These two saponins were evaluated for haemolytic activities and adjuvant potentials on the cellular and humoral immune responses of ICR mice against ovalbumin (OVA). The concentrations inducing 50% of the maximum haemolysis (HD50), using 0.5% red blood cell suspensions, were 469.6+/-16.9 and 420.4+/-22.9 microg/ml for 1 and 2, respectively. Compounds 1 and 2 significantly increased the concanavalin A (Con A)-, lipopolysaccharide (LPS)-, and OVA-induced splenocyte proliferation in the OVA-immunized mice (P<0.05, P<0.01, or P<0.001). The OVA-specific IgG, IgG1, and IgG2b antibody titres in serum were also significantly enhanced by 1 and 2 compared with OVA control group (P<0.05, P<0.01, or P<0.001). The results indicate that 1 and 2 showed a slight haemolytic activity and significant adjuvant effect on specific antibody and cellular immune response against OVA in mice, and that the type of the terminal sugar of the sugar chain at C(6) of protopanaxatriol could not only affect their haemolytic activities and adjuvant potentials, but have significant effects on the nature of the immune responses. The information about this structure-function relationship might be useful for developing semisynthetic dammarane-type saponin derivatives with immunological adjuvant activity. 相似文献
9.
Mohammad Reza Tabandeh Seyed Ahmad Hosseini Maryam Hosseini 《Journal of receptor and signal transduction research》2017,37(4):370-378
Context: Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle.Objectives: The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells.Materials and methods: C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10?μM) for different incubation times (1–12?h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells.Results: Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10?μM for 3?h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K.Conclusions: Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K. 相似文献
10.
11.
Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514 总被引:1,自引:0,他引:1
Ginseng saponin, the most important secondary metabolite in ginseng, has various pharmacological activities. Many studies have been directed towards converting major ginsenosides to the more active minor ginsenoside, Rg3. Due to the difficulty in preparing ginsenoside Rg3 enzymatically, the compound has been mainly produced by either acid treatment or heating. A microbial strain GS514 was isolated from soil around ginseng roots in a field and used for enzymatic preparation of the ginsenoside Rg3. Blast results of the 16S rRNA gene sequence of the strain GS514 established that the strain GS514 belonged to the genus Microbacterium. Its 16S rRNA gene sequence showed 98.7%, 98.4% and 96.1% identity with those of M. esteraromaticum, M. arabinogalactanolyticum and M. lacticum. Strain GS514 showed a strong ability to convert ginsenoside Rb1 or Rd into Rg3. Enzymatic production of Rg3 occurred by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1 showing the biotransformation pathway: Rb1-->Rd-->Rg3. 相似文献
12.
Ginsenoside Rb1 is the most predominant ginsenoside in Panax species (ginseng) and the hydrolysis of this ginsenoside produces pharmaceutically active compounds. Caulobacter leidyia GP45, one of the isolates having strong β-glucosidase-producing activity, converted ginsenoside Rb1 to the active metabolites by 91%. The structures of the resultant metabolites were identified by NMR. Ginsenoside Rb1 had been consecutively converted to ginsenoside Rd (1), F2 (2) and compound K (3) via the hydrolyses of 20-C β-(1→6)-glucoside, 3-C β-(1→2)-glucoside, and 3-C β-glucose of ginsenoside Rb1. 相似文献
13.
14.
目的研究人参皂苷Rb3对中国仓鼠肺细胞(CHL)染色体畸变作用。方法测定人参皂苷Rb3对CHL细胞的半数抑制浓度(IC50),根据IC50设立不同剂量组,进行染色体畸变试验,分别观察人参皂苷Rb3接触CHL细胞6 h、24 h及加S9后6 h染色体的畸变情况,根据标准进行结果判定。结果染毒6 h、24 h及加S9后染毒6 h染色体畸变为阴性。结论人参皂苷Rb3不能引起CHL细胞染色体产生畸变作用。 相似文献
15.
人参皂甙Rb3对大鼠海马神经细胞谷氨酸损伤作用及相关机制的研究 总被引:2,自引:0,他引:2
目的:利用原代培养的海马神经细胞,研究人参皂甙Rb3对谷氨酸兴奋性神经毒性的保护作用及有关机制。方法:采用原代培养的胚胎大鼠海马神经细胞谷氨酸毒性模型,观察人参皂甙Rb3对神经细胞形态、神经细胞活性、细胞外液中乳酸脱氢酶(lactate dehydrogenase,LDH)的漏出率及总一氧化氮合酶(nitrogen oxide synthase,NOS)、结构型N0s、诱导型NOS活性等的影响。结果:人参皂甙Rb3对神经细胞的谷氨酸毒性损伤具有保护作用。使细胞形态保持完整,活力增加,细胞膜损伤减轻;而且人参皂甙Rb3能增加神经细胞的结构型NOS活性。降低诱导型NOS的活性。结论:人参皂甙Rb,具有抗谷氨酸兴奋性毒性作用,其作用机制可能与降低诱导型NOS活性。增加结构型NOS的活性有关。 相似文献
16.
Kyung-Hee Kim Karen Song Seung-Hee Yoon Omer Shehzad Yeong-Shik Kim Jin H. Son 《The Journal of biological chemistry》2012,287(53):44109-44120
PINK1, linked to familial Parkinson''s disease, is known to affect mitochondrial function. Here we identified a novel regulatory role of PINK1 in the maintenance of complex IV activity and characterized a novel mechanism by which NO signaling restored complex IV deficiency in PINK1 null dopaminergic neuronal cells. In PINK1 null cells, levels of specific chaperones, including Hsp60, leucine-rich pentatricopeptide repeat-containing (LRPPRC), and Hsp90, were severely decreased. LRPPRC and Hsp90 were found to act upstream of Hsp60 to regulate complex IV activity. Specifically, knockdown of Hsp60 resulted in a decrease in complex IV activity, whereas antagonistic inhibition of Hsp90 by 17-(allylamino) geldanamycin decreased both Hsp60 and complex IV activity. In contrast, overexpression of the PINK1-interacting factor LRPPRC augmented complex IV activity by up-regulating Hsp60. A similar recovery of complex IV activity was also induced by coexpression of Hsp90 and Hsp60. Drug screening identified ginsenoside Re as a compound capable of reversing the deficit in complex IV activity in PINK1 null cells through specific increases of LRPPRC, Hsp90, and Hsp60 levels. The pharmacological effects of ginsenoside Re could be reversed by treatment of the pan-NOS inhibitor l-NG-Nitroarginine Methyl Ester (l-NAME) and could also be reproduced by low-level NO treatment. These results suggest that PINK1 regulates complex IV activity via interactions with upstream regulators of Hsp60, such as LRPPRC and Hsp90. Furthermore, they demonstrate that treatment with ginsenoside Re enhances functioning of the defective PINK1-Hsp90/LRPPRC-Hsp60-complex IV signaling axis in PINK1 null neurons by restoring NO levels, providing potential for new therapeutics targeting mitochondrial dysfunction in Parkinson''s disease. 相似文献
17.
18.
The effects of external calcium concentrations on biosynthesis of ginsenoside Rb1 and several calcium signal sensors were quantitatively investigated in suspension cultures of Panax notoginseng cells. It was observed that the synthesis of intracellular ginsenoside Rb1 in 3-day incubation was dependent on the medium Ca2+ concentration (0-13 mM). At an optimal Ca2+ concentration of 8 mM, a maximal ginsenoside Rb1 content of 1.88 +/- 0.03 mg g(-1) dry weight was reached, which was about 60% and 25% higher than that at Ca2+ concentrations of 0 and 3 mM, respectively. Ca2+ feeding experiments confirmed the Ca2+ concentration-dependent Rb1 biosynthesis. In order to understand the mechanism of the signal transduction from external Ca2+ to ginsenoside biosynthesis, the intracellular content of calcium and calmodulin (CaM), activities of calcium/calmodulin-dependent NAD kinase (CCDNK) and calcium-dependent protein kinase (CDPK), and activity of a new biosynthetic enzyme of ginsenoside Rb1, i.e., UDPG:ginsenoside Rd glucosyltransferase (UGRdGT), in the cultured cells were all analyzed. The intracellular calcium content and CCDNK activity were increased with an increase of external Ca2+ concentration within 0-13 mM. In contrast, the CaM content and activities of CDPK and UGRdGT reached their highest levels at 8 mM of initial Ca2+ concentration, which was also optimal to the ginsenoside Rb1 synthesis. A similar Ca2+ concentration-dependency of the intracellular contents of calcium and CaM and activities of CCDNK, CDPK, and UGRdGT was confirmed in Ca2+ feeding experiments. Finally, a possible model on the effect of external calcium on ginsenoside Rb1 biosynthesis via the signal transduction pathway of CaM, CDPK, and UGRdGT is proposed. Regulation of external Ca2+ concentration is considered a useful strategy for manipulating ginsenoside Rb1 biosynthesis by P. notoginseng cells. 相似文献
19.
Yu J Eto M Akishita M Kaneko A Ouchi Y Okabe T 《Biochemical and biophysical research communications》2007,353(3):764-769
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells. 相似文献
20.
Toxoplasma gondii, the etiological agent of toxoplasmosis, is an obligate intracellular protozoan parasite that infects a variety of mammals including humans. In an attempt to find new antigen-adjuvant combinations that enhance the immunogenicity of antigen candidates for toxoplasma vaccines, we analyzed the potent protection in mice immunized with recombinant protein ROP18 when co-administered with ginsenoside Re, a most important component isolated from Panax ginseng. All immunized mice produced specific anti-rROP18 immunoglobulins, with high levels of IgG antibody and a mixed IgG1/IgG2a response, with predominance of IgG1 production. The cellular and humoral immune responses were associated with the production of IFN-γ and IL-4 cytokines respectively. Vaccinated mice displayed a significantly increased survival time compared with control mice which died within 6 days of challenge with RH strain. Our data demonstrate that by addition of ginsenoside Re, the rROP18 triggered a stronger humoral and cellular response against T. gondii, and that Re is a promising vaccine adjuvant against toxoplasmosis, deserves further evaluation and development. 相似文献