首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was designed to determine the relationship of leptin concentration to gender, sex hormones, menopause, age, diabetes, and fat mass in African Americans. Participants included 101 African Americans, 38 men (mean age, 34. 2 ± 7. 4 years), 29 age-matched premenopausal women (mean age, 32. 6 ± 3. 7 years), and 36 postmenopausal women (mean age, 57. 8 ± 5. 9 years). The women were not taking exogenous sex hormones, and 12 subjects were diabetic. Percent body fat was calculated with the Siri formula, fat mass (FM) was calculated as weight x percent body fat, and Fat-free mass (FFM) was calculated as weight minus FM. Fasting plasma was assayed for leptin, estradiol, free testosterone, glucose, and insulin concentrations. The nondiabetics had an oral glucose tolerance test (OGTT). The diabetics compared with the non-diabetics had a higher central fat index (P=0. 04) but otherwise were similar to nondiabetics in all parameters measured. Body mass index, percent body fat, and FM were greater in women than men (p<0. 001). Leptin concentrations in men, premenopausal, and postmenopausal women were: 7. 51 ± 8. 5, 33. 9 ± 17. 3, 31. 4 ± 22. 3 ng/mL. Leptin/FM x 100 in the three groups were: 28. 9 ± 16. 1, 98. 65 ± 44. 9, 77. 1 ± 44. 5 ng/mL/kg. The gender difference in leptin concentration and leptin/FM was significant (p<0. 001), but the difference between premenopausal and postmenopausal women was not. In each group, weight, percent body fat, and FM were highly correlated with leptin concentration. Multiple regression analyses with leptin concentration as the dependent variable and age, diabetic status, percent body fat, weight, FM, FFM, estradiol, and free testosterone concentrations as independent variables demonstrated that the determinants of leptin concentration in men was weight only (R=0. 83,p<0. 001), in premenopausal women it was FM only (R=0. 57,P<0. 001), and in postmenopausal women it was weight only (R=0. 67, p<0. 001). With diabetics excluded, the multiple regression analysis was repeated with fasting insulin concentration and the area under the insulin curve during the OGTT included as independent variables. The results for this multiple regression analyses were the same as the first. Therefore, leptin concentration in African Americans is determined by gender and fat mass. Menopause, age, and diabetes do not affect leptin concentration.  相似文献   

2.
Objective: Because leptin production by adipose tissue is under hormonal control, we examined the impact of epinephrine administration on plasma leptin concentrations. Research Methods and Procedures: We measured plasma leptin, insulin, and free fatty acid (FFA) responses after a 60-minute epinephrine infusion (0.010 μg/kg fat free mass/min) followed by a 30-minute recovery period (no infusion) in a group of 11 lean (mean body mass index ± SD: 22.6 ± 1.1 kg/m2) and 15 obese (30.0 ± 1.3 kg/m2) premenopausal women. Leptin, insulin, and FFA levels were measured in plasma before (−15 and 0 minutes) and at every 30 minutes over the 90-minute period. Results: In both lean and obese individuals, plasma leptin was significantly reduced by epinephrine (p < 0.0001). Body fat mass was associated with fasting leptin levels (r = 0.64, p < 0.0005) as well as with the decrease in leptinemia (r = −0.51, p < 0.01) produced by epinephrine administration. Furthermore, we noted a large range of leptin response to epinephrine among our subjects, especially in obese women (from −12 to −570 ng/mL per 60 minutes). However, there was no association between postepinephrine leptin and FFA levels (r = −0.14, p = 0.55). Discussion: Results of this study indicate that leptin levels decrease after epinephrine administration in both lean and obese premenopausal women. However, the heterogeneity in the response of leptin to catecholamines suggests potential alterations of the leptin axis that may contribute to generate a positive energy balance and, thus, may favor weight gain in some obese individuals.  相似文献   

3.
Objective : This study was designed to determine if serum leptin concentrations (adjusted for fat mass) after weight loss on a low-calorie diet predict subsequent weight gain. Research Methods and Procedures : Body composition and serum leptin concentrations were determined on 14 moderately obese, postmenopausal, nondiabetic women with a familial predisposition to obesity. Assessments were obtained under tightly controlled metabolic ward conditions of macronutrient intake and weight maintenance both before (obese state) and after a mean weight loss of 12.0 kg to normal body weight (postobese state). Four years later, without intervention, body weight and body composition were reassessed. Results : Weight loss resulted in significant decreases in fat mass (29.7 ± 5.4 vs. 20.3 ± 4.7; kg), body mass index (27.7 ± 1.6 vs. 23.0 ± 1.5; kg/m2), percent body fat (40.7 ± 4.3 vs. 33.1 ± 5.0), and serum leptin concentrations (31.8 ± 16.0 vs. 11.5 ± 5.4; ng/mL). Serum leptin concentrations were positively correlated (p<<0.05) with fat mass in both the obese and postobese states (r = 0.67 and r = 0.56, respectively). However, residual serum leptin concentrations (adjusted for fat mass) in the obese and postobese states were not related to changes in body weight (p<= 0.61 and 0.52), fat mass (p = 0.72 and 0.42), body mass index (p = 0.59 and 0.33), or percent body fat (p = 0.84 and 0.46) over the follow-up period. Discussion : These finding do not support the hypothesis that relatively low concentrations of leptin predict weight regain after weight loss. However, because the number of subjects in this study was limited, further studies are warranted.  相似文献   

4.
Objective: The relationship among body fat distribution, blood pressure, serum leptin levels, and insulin resistance was investigated in hypertensive obese women with central distribution of fat. Research Methods and Procedures: We studied 74 hypertensive women (age, 49.8 ± 7.5 years; body mass index, 39.1 ± 5.5 kg/m2; waist-to-hip ratio, 0.96 ± 0.08). All patients were submitted to 24-hour blood pressure ambulatory monitoring (24h-ABPM). Abdominal ultrasonography was used to estimate the amount of visceral fat (VF). Fasting blood samples were obtained for serum leptin and insulin determinations. Insulin resistance was estimated by homeostasis model assessment insulin resistance index (HOMA-r index). Results: Sixty-four percent of the women were postmenopausal, and all patients showed central distribution of fat (waist-to-hip ratio > 0.85). The VF correlated with systolic 24h-ABPM values (r = 0.28, p = 0.01) and with HOMA-r index (r = 0.27; p = 0.01). VF measurement (7.5 ± 2.3 vs. 5.9 ± 2.2 cm, p < 0.001) and the systolic 24h-ABPM (133 ± 14.5 vs. 126 ± 9.8 mm Hg, p = 0.04), but not HOMA-r index, were significantly higher in the postmenopausal group (n = 48) than in the premenopausal group (n = 26). No correlations were observed between blood pressure levels and HOMA-r index, leptin, or insulin levels. In the multiple regression analysis, visceral fat, but not age, body fat mass, or HOMA-r index, correlated with the 24h-ABPM (p = 0.003). Discussion: In centrally obese hypertensive women, the accumulation of VF, more often after menopause, is associated with higher levels of blood pressure and insulin resistance. The mechanism through which VF contributes to higher blood pressure levels seems to be independent of leptin or insulin levels.  相似文献   

5.
Objective: To compare sarcopenic‐obese and obese postmenopausal women for risk factors predisposing to cardiovascular disease (CVD) and determine whether there may be a relationship between muscle mass and metabolic risk in obese postmenopausal women. Research Methods and Procedures: In this cross‐sectional study, 22 healthy obese postmenopausal women (mean age, 66 ± 5 years; mean BMI, 27 ± 3 kg/m2) were divided into two groups matched for age (±2 years) and fat mass (FM) (±2%). Sarcopenia was defined as a muscle mass index of <14.30 kg fat‐free mass (FFM)/m2 (which corresponds to 1 standard deviation below the values of a young reference population), and obesity was defined as an FM of >35% (which corresponds to the World Health Organization guidelines). FM, FFM (measured by DXA), daily energy expenditure (accelerometry), dietary intake (3‐day dietary record), and blood biochemical analyses (lipid profile, insulin, glucose, and C‐reactive protein) were obtained. Visceral fat mass (VFM) was calculated by the equation of Bertin, which estimates VFM from DXA measurements. Results: Obese women had more FFM (p = 0.006), abdominal FM (p = 0.047), and VFM (p = 0.041) and a worse lipid profile [p = 0.040 for triglycerides; p = 0.004 for high‐density lipoprotein (HDL); p = 0.026 for total cholesterol/HDL] than sarcopenic‐obese postmenopausal women. Obese women also ingested significantly more animal (p = 0.001) and less vegetal proteins (p = 0.013), although both groups had a similar total protein intake (p = 0.967). Discussion: Sarcopenia seems to be associated with lower risk factors predisposing to CVD in obese postmenopausal women. With the increase in the number of aging people, the health implications of being sarcopenic‐obese merit more attention.  相似文献   

6.
Objective : We describe associations among the heart‐rate‐corrected QT (QTc) interval, QTc dispersion (QTc‐d), circadian BP variation, and autonomic function in obese normotensive women and the effect of sustained weight loss. Research Methods and Procedures : In 71 obese (BMI = 37.14 ± 2.6 kg/m2) women, 25 to 44 years of age, circadian BP variations (24‐hour ambulatory BP monitoring), autonomic function (power spectral analysis of RR interval oscillations), and cardiac repolarization times (QTc‐d and QTc interval) were recorded at baseline and after 1 year of a multidisciplinary program of weight reduction. Results : Compared with nonobese age‐matched women (n = 28, BMI = 23 ± 2.0 kg/m2), obese women had higher values of QTc‐d (p < 0.05) and QTc (p < 0.05), an altered sympathovagal balance (ratio of low‐frequency/high‐frequency power, p < 0.01), and a blunted nocturnal drop in BP (p < 0.01). In obese women, QTc‐d and the QTc interval correlated with diastolic nighttime BP (p < 0.01) and sympathovagal balance (p < 0.01). Waist‐to‐hip ratio, free fatty acids, and plasma insulin levels correlated with QT intervals and reduced nocturnal drops in both systolic and diastolic BP and sympathovagal balance (p < 0.01). After 1 year, obese women lost at least 10% of their original weight, which was associated with decrements of QTc‐d (p < 0.02), the QTc interval (p < 0.05), nighttime BP (p < 0.01), and sympathovagal balance (p < 0.02). Discussion : Sustained weight loss is a safe method to ameliorate diastolic nighttime BP drop and sympathetic overactivity, which may reduce the cardiovascular risk in obese women.  相似文献   

7.
Objective: The objective of this study was to evaluate the impact of obesity on pelvic floor function in women. Research Methods and Procedures: This was a prospective controlled study of 20 morbidly obese female patients planning to undergo gastric bypass surgery and 20 age‐matched female controls. Subjects completed symptom and impact questionnaires, including the Incontinence Impact Questionnaire (IIQ‐7), Urogenital Distress Inventory (UDI), the Kobashi Prolapse Symptom Inventory and Quality‐of‐Life Questionnaire (PSI‐QOL), and Index of Female Sexual Function. Data were analyzed with Wilcoxon or ratio χ2 tests. Results: Mean weight was 295.7 ± 87.9 lbs in the study group and 144.79 ± 33.07 lbs in the control group. Mean BMI was 52.65 ±14.49 kg/m2 in the study group and 25.11 ± 5.27 kg/m2 in the control group. According to the IIQ‐7, urinary incontinence significantly affected lifestyle in the study group. The total IIQ‐7 score was also significantly affected in the study group (p = 0.03). The UDI indicated more urinary leakage with activity (p = 0.04) and more incidents of small amounts of leakage (p = 0.02) in the study group. According to the PSI‐QOL, women in the study group experienced constipation more often because of difficulty in emptying the rectum (p = 0.04). The PSI‐QOL score was higher in the study group (6.75 ± 6.84) than in the control group (2.65 ± 3.03; p = 0.04). There were no significant differences between groups regarding sexual function. Discussion: Morbid obesity is associated with a significant negative impact on urogenital health. Sexual function did not seem to be affected in women who are morbidly obese.  相似文献   

8.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

9.
Objective: Leptin concentrations increase with obesity and tend to decrease with weight loss. However, there is large variation in the response of serum leptin levels to decreases in body weight. This study examines which endocrine and body composition factors are related to changes in leptin concentrations following weight loss in obese, postmenopausal women. Research Methods and Procedures: Body composition (DXA), visceral obesity (computed tomography), leptin, cortisol, insulin, and sex hormone‐binding globulin (SHBG) concentrations were measured in 54 obese (body mass index [BMI] = 32.0 ± 4.5 kg/m2; mean ± SD), women (60 ± 6 years) before and after a 6‐month hypocaloric diet (250 to 350 kcal/day deficit). Results: Body weight decreased by 5.8 ± 3.4 kg (7.1%) and leptin levels decreased by 6.6 ± 11.9 ng/mL (14.5%) after the 6‐month treatment. Insulin levels decreased 10% (p < 0.05), but mean SHBG and cortisol levels did not change significantly. Relative changes in leptin with weight loss correlated positively with relative changes in body weight (r = 0.50, p < 0.0001), fat mass (r = 0.38, p < 0.01), subcutaneous fat area (r = 0.52, p < 0.0001), and with baseline values of SHBG (r = 0.38, p < 0.01) and baseline intra‐abdominal fat area (r = ?0.27, p < 0.06). Stepwise multiple regression analysis showed that baseline SHBG levels (r2 = 0.24, p < 0.01), relative changes in body weight (cumulative r2 = 0.40, p < 0.05), and baseline intra‐abdominal fat area (cumulative r2 = 0.48, p < 0.05) were the only independent predictors of the relative change in leptin, accounting for 48% of the variance. Discussion: These results suggest that obese, postmenopausal women with a lower initial SHBG and more visceral obesity have a greater decrease in leptin with weight loss, independent of the amount of weight lost.  相似文献   

10.
Objective: To investigate the response of the brains of women to the ingestion of a meal. Research Methods and Procedures: We used measures of regional cerebral blood flow (rCBF), a marker of neuronal activity, by positron emission tomography to describe the functional anatomy of satiation, i.e., the response to a liquid meal in the context of extreme hunger (36‐hour fast) in 10 lean (BMI ≤ 25 kg/m2; 32 ± 10 years old, 61 ± 7 kg; mean ± SD) and 12 obese (BMI ≥ 35 kg/m2; 30 ± 7 years old, 110 ± 14 kg) women. Results: In lean and obese women, satiation produced significant increases in rCBF in the vicinity of the prefrontal cortex (p < 0.005). Satiation also produced significant decreases in rCBF in several regions including the thalamus, insular cortex, parahippocampal gyrus, temporal cortex, and cerebellum (in lean and obese women), and hypothalamus, cingulate, nucleus accumbens, and amygdala (in obese women only; all p < 0.005). Compared with lean women, obese women had significantly greater increases in rCBF in the ventral prefrontal cortex and had significantly greater decreases in the paralimbic areas and in areas of the frontal and temporal cortex. Discussion: This study indicates that satiation elicits differential brain responses in obese and lean women. It also lends additional support to the hypothesis that the paralimbic areas participate in a central orexigenic network modulated by the prefrontal cortex through feedback loops.  相似文献   

11.
Objective: To investigate the relationships between visceral obesity and hepatic steatosis in obese patients undergoing adjustable silicone gastric banding with the LAP‐BAND. Research Methods and Procedures: Six premenopausal, morbidly obese women with an ultrasonographic diagnosis of liver steatosis were evaluated before surgery and 8 and 24 weeks after surgery. Liver volume and body fat distribution were simultaneously analyzed by total‐body multislices magnetic resonance imaging. Results: Before surgery, the only variable found to be correlated with liver volume was visceral adipose tissue volume (r = 0.91; p < 0.01). Weight loss was 9.9 ± 3.8 kg in the period from 0 to 8 weeks (p < 0.01) and 7.1 ± 4.9 kg in the the period from 8 to 24 weeks (p < 0.05). Total fat showed a statistically significant reduction of 6.2 ± 4.0 liters in the 0‐ to 8‐week period and a further significant reduction of 7.7 ± 3.9 liters in the 8‐ to 24‐week period. Visceral adipose tissue showed a statistically significant reduction of 1.0 ± 0.9 liters in the 0‐ to 8‐week period (p < 0.05) but only a further, not significant reduction of 0.6 ± 0.7 liters in the 8‐ to 24‐week period. The relative reduction of visceral fat in the 0‐to 8‐week period was higher than the relative reduction of total fat. Liver volume also showed a statistically significant reduction of 0.24 ± 0.26 liters in the first phase of weight loss (p < 0.05), corresponding to a relative reduction of 12.3 ± 10.6%. During the 8‐ to 24‐week period, liver volume was substantially stable. Discussion: Hepatomegaly was associated with visceral obesity in morbidly obese women with liver steatosis. In the phase of rapid weight loss after gastric surgery, a preferential mobilization of visceral fat, compared with total adipose tissue, occurred. This preferential visceral fat loss was associated with a significant reduction in liver volume.  相似文献   

12.
Objective: To determine whether racial differences exist in the relationship of the abnormalities defining the metabolic syndrome (MS) to regional adiposity and fat cell size (FCS) in obese postmenopausal women. Research Methods and Procedures: We determined the relationship of metabolic variables associated with the MS to regional body composition and abdominal (ABD) and gluteal (GLT) FCS in 25 white (CAU) and 25 African‐American (AF‐AMER) older women matched for age (58 ± 5 years; mean ± SD) and BMI (35 ± 4 kg/m2). Results: MS was present in 36% of the AF‐AMER and 57% of the CAU women. There were no differences in total body, trunk, gluteofemoral fat mass or regional FCS, but AF‐AMER women had 22% lower visceral fat, 24% higher insulin, and 31% lower triglyceride levels than CAU women (p < 0.05). Multiple regression analysis with body fat, visceral ABD fat area, and FCS as independent variables showed that GLT FCS was independently correlated with 2‐hour insulin (r = 0.56), triglyceride (r = 0.62), and high‐density lipoprotein cholesterol (r = ?0.72) levels in AF‐AMER women but not in CAU women, where only systolic blood pressure correlated with subcutaneous ABD fat area (r = 0.57) (p < 0.05). Discussion: The associations between GLT FCS and metabolic dysfunction in obese AF‐AMER but not CAU women suggest that central obesity is a less valid predictor of the MS in obese postmenopausal AF‐AMER women than in CAU women and that GLT FCS may be a more sensitive indicator of risk for the MS in AF‐AMER women.  相似文献   

13.
Objective: To determine what effect diet‐induced ~12 kg weight loss in combination with exercise training has on body composition and resting energy expenditure (REE) in premenopausal African‐American (AA) and European‐American (EA) women. Methods and Procedures: This study was a longitudinal, randomized weight loss clinical intervention, with either aerobic (AT), resistance (RT), or no exercise training (NT). Forty‐eight AA and forty‐six EA premenopausal overweight (BMI between 27 and 30) women underwent weight loss to a BMI <25. Body composition (densitometry), REE (indirect calorimetry), maximal oxygen uptake (VO2max), and muscular strength (isometric elbow flexion) were evaluated when subjects were in energy balance. Results: AA women lost less fat‐free mass (FFM, P ≤ 0.05) (47.0 ± 4.6 to 46.9 ± 5.0 kg) than EA women (46.4 ± 4.9 to 45.2 ± 4.6 kg). Regardless of race, RT maintained FFM (P ≤ 0.05) following weight loss (46.9 ± 5.2 to 47.2 ± 5.0 kg) whereas AT (45.4 ± 4.2 to 44.4 ± 4.1 kg) and NT (47.9 ± 4.7 to 46.4 ± 5.1 kg) decreased FFM (P ≤ 0.05). Both AT and NT decreased in REE with weight loss but RT did not. Significant time by group interactions (all P ≤ 0.05) for strength indicated that RT maintained strength and AT did not. Discussion: AA women lost less FFM than EA women during equivalent weight losses. However, following weight loss in both AA and EA, RT conserved FFM, REE, and strength fitness when compared to women who AT or did not train.  相似文献   

14.
Objective: The goal of this study was to quantify differences in lipid metabolism and insulin sensitivity in black and white subjects to explain ethnic clinicopathological differences in type 2 diabetes. Research Methods and Procedures: The in vitro lipolytic activity of adipocytes isolated from obese black and white women was measured in the presence of insulin and isoproterenol. Insulin resistance was assessed in vivo using the euglycemic hyperinsulinemic clamp technique. Results: Fasting plasma levels of insulin and nonesterified fatty acid (NEFA) in black and white women were 67 ± 5 pM vs. 152 ± 20 pM (p < 0.01) and 863 ± 93 μM vs. 412 ± 34 μM (p < 0.01), respectively. Euglycemic hyperinsulinemic clamp studies showed that obese black subjects were more insulin‐resistant than their white counterparts (glucose infusion rates: 1.3 ± 0.2 vs. 2.2 ± 0.3 mg/kg per min; p < 0.05). Isolated adipocytes from white women were more responsive to insulin than those from black women with 0.7 nM insulin causing a 55 ± 4% inhibition of isoproterenol‐stimulated lipolysis compared with 27 ± 10% in black women (p < 0.05). Discussion: The low responsiveness of adipocyte lipolytic activity to insulin in black women in the presence of a relative insulinopenia may account for the high plasma NEFA levels seen in these women, which may, in turn, account for their higher in vivo insulin resistance. High NEFA levels may also contribute to the low insulin secretory activity observed in the obese black females. These data suggest that the pathogenesis of insulin resistance and type 2 diabetes within the black obese community is strongly influenced by their adipocyte metabolism.  相似文献   

15.
Alterations in antioxidant defense in obese people with metabolic syndrome can contribute to oxidative stress. This study assessed the relationship between the parameters of metabolic syndrome and the zincemia, activity of superoxide dismutase, and glutathione peroxidase enzymes in obese women. Seventy-three premenopausal women, aged between 20 and 50 years, were divided into two groups: case group, composed of obese (n = 37), and control group, composed of no obese (n = 36). Analyses of zinc intake, parameters of metabolic syndrome, plasma, and erythrocyte zinc, and activities of superoxide dismutase and glutathione peroxidase were carried out. The mean values of body mass index of obese women and control group were 34.5 ± 3.4 and 21.7 ± 1.9 kg/m2, respectively (p < 0.05). In the study, body mass index, waist circumference, and zinc intake were higher in obese women than control group (p < 0.05). The plasma zinc and activity of superoxide dismutase did not show significant differences between obese and controls (p > 0.05). The values of erythrocyte zinc was 36.4 ± 15.0 μg/gHb and 45.4 ± 14.3 μg/gHb and of glutathione peroxidase was 46.4 ± 19.4 U/gHb and 36.7 ± 13.6 U/gHb in obese women and controls, respectively (p < 0.05). The study shows that there are alterations in biochemical parameters of zinc in obese women, with low zinc concentrations in erythrocytes. Regression analysis demonstrates that the erythrocyte zinc and activity of superoxide dismutase enzyme is influenced by components of the metabolic syndrome, and the plasmatic glucose, body mass index, and waist circumference have a negative correlation with this enzyme.  相似文献   

16.
Objective: To evaluate the relationship between fasting plasma concentrations of ghrelin and gastric emptying in obese individuals compared with lean subjects. Research Methods and Procedures: We included 20 obese patients (9 men and 11 women, BMI > 30 kg/m2) and 16 nonobese control subjects (7 men and 9 women, BMI ≤ 25 kg/m2). Gastric emptying of solids (egg sandwich labeled with radionuclide) was measured at 120 minutes with (99m)Tc‐single photon emission computed tomography imaging. Ghrelin and leptin were analyzed by radioimmunoassay and ELISA methods, respectively. Results: The gastric half‐emptying time was similar in obese men and women (67.8 ± 14.79 vs. 66.6 ± 13.56 minutes) but significantly shorter (p < 0.001) than in the control population (men: 88.09 ± 11.72 minutes; women: 97.25 ± 10.31 minutes). Ghrelin levels were significantly lower in obese subjects (131.37 ± 47.67 vs. 306.3 ± 45.52 pg/mL; p < 0.0001 in men and 162.13 ± 32.95 vs. 272.8 ± 47.77 pg/mL; p < 0.0001 in women). A negative correlation between gastric emptying and fasting ghrelin levels was observed only in lean subjects (y = ?0.2391x + 157.9; R2 = 0.95). Also, in the lean group, ghrelin was the only significant independent determinant of gastric emptying, explaining 98% of the variance (adjusted R2) in a multiple regression analysis. Discussion: This report shows that, in humans, gastric emptying is faster in obese subjects than in lean controls and that, whereas ghrelin is the best determinant of gastric kinetics in healthy controls, this action is lost in obesity.  相似文献   

17.
18.
Objective : To study the effects of a 12-week weight loss strategy involving increased physical activity, self-selected hypocaloric diet, and group support on psychological well-being, quality of life, and health practices in moderately obese women. Methods; Eighty women aged 20–49 years weighing between 20–50% above 1983 Metropolitan Life Insurance Tables were randomly assigned to a weight loss intervention (6279 kJ/week of physical activity, 33,258-41,462 kJ/week diet and weekly meetings) or served as controls. Subjects were tested pre and post 12-weeks. Results : The intervention group lost significant (p<0.001) body weight (kg) and body fat (%) compared to controls (-6.07 ± 4.01 kg vs. 1.31 ± 1.28 kg; 36.8%-32.5% vs. 36.2%-36.0%). Intervention subjects vs. controls achieved significant improvements (p<0.001) in body cathexis (X Change 18.6 ± 16.7 vs. 0.7 ± 8.6) and estimation of ability to achieve physical fitness (X Change 8.1 ± 7.1 vs. 0.9 ± 5.9). Various quality of life indices also improved (p<0.01) in the intervention group compared to controls (physical function: X Change 13.5.2 ± 16.7 vs. 1.4 ± 9.5; vitality: X change 21.7 ± 17.9 vs. 2.9 20.8; mental health: X change 10.4 ± 16.0 vs. 2.3 ± 10.1). Similarly, physical activity levels also improved significantly (p<0.0001) in the intervention group (4.4 ± 2.3 vs. 0.6 ± 1.3; on NASA 0–7 scale). Conclusions : Practical weight loss practices such as increased activity, self-selected hypocaloric diet, and group support are effective for weight loss and yield significant health and psychological benefits in moderately obese females.  相似文献   

19.
NICKLAS, BARBARA S., DORA M. BERMAN, DAWN C. DAVIS, C. LYNNE DOBROVOLNY, AND KAREN E. DENNIS. Racial differences in metabolic predictors of obesity among postmenopausal women. Ober Res. Objective: This study determined whether there are racial differences in resting metabolic rate (RMR), fat oxidation, and maximal oxygen consumption (VO,max) in obese [body mass index (BMI = 34±2 kg/m2)], postmenopausal (58±2 years) women. Research Methods and Procedures: Twenty black and 20 white women were matched for fat mass and lean mass (LM), as determined by dual energy X-ray absorptiometry. RMR and fat oxidation were measured by indirect calorimetry in the early morning after a 12-hour fast using the ventilated hood technique. VO2max was measured on a treadmill during a progressive exercise test to voluntary exhaustion. Results: RMR, adjusted for differences in LM, was 5% higher in white than black women (1566±27 and 1490±26 kcal/day, respectively; p<0. 05); and fat oxidation rate was 17% higher in white than black women (87±4 and 72±3 g/day, respectively; p<0. 01). VO2max (L/minute) was 150 mL per minute (8%) higher (p<0. 05) in white than black women. VO2max correlated with LM in black (r = 0. 44, p = 0. 05) and white (r=0. 53, p<0. 05) women, but the intercept of the regression line was higher in white than black women (p<0. 05), with no significant difference in slopes. In a multiple regression model including race, body weight, LM, and age, LM was the only independent predictor of RMR (r2 = 0. 46, p<0. 0001), whereas race was the only independent predictor of fat oxidation (r2 = 0. 18,p<0. 05). The best predictors of VO,max were LM (r2 = 0. 22, p<0. 05) and race (cumulative r2 = 0. 30, p<0. 05). Discussion: These results show there are racial differences in metabolic predictors of obesity. Determination of whether these ethnic differences lead to, or are an effect of, obesity status or other lifestyle factors requires further study.  相似文献   

20.
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS‐69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS‐69 genotype were measured in 115 normal‐weight (BMI <25 kg/m2) and 138 obese (BMI ≥30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI ≥35kg/m2) compared with the normal‐weight group (P = 0.029). Obese subjects with the insertion allele had greater fat mass (42.3 ± 0.9 vs. 38.9 ± 0.9 kg, P = 0.034) and fat‐free soft tissue mass (47.4 ± 0.6 vs. 45.1 ± 0.6 kg, P = 0.014), and more abdominal subcutaneous adipose tissue (SAT, 595 ± 17 vs. 531 ± 17 cm2, P = 0.025) but not visceral fat (P = 0.739), than obese homozygotes for the wild‐type allele. Only SAT was greater in normal‐weight subjects with the insertion allele (P = 0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild‐type allele in the normal‐weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat‐free soft tissue mass and fat mass, particularly SAT, in obese black South African women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号