首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background

Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat.

Methodology/Principal Findings

Our studies revealed that NADPH oxidase activity and superoxide (O2 ) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O2 production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated “in situ” O2 production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7–9 d post reperfusion as compared to vehicle-treated animals.

Conclusions/Significance

The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.  相似文献   

2.
Human carbonyl reductase 1 (CBR1) is a member of the NADPH-dependent short-chain dehydrogenase/reductase superfamily that is known to play an important role in neuronal cell survival via its antioxidant function. Oxidative stress is one of the major causes of degenerative disorders including ischemia. However, the role CBR1 plays with regard to ischemic injury is as yet poorly understood. Protein transduction domains such as PEP-1 are well known and now commonly used to deliver therapeutic proteins into cells. In this study, we prepared PEP-1–CBR1 protein and examined whether it protects against oxidative-stress-induced neuronal cell damage. PEP-1–CBR1 protein was efficiently transduced into hippocampal neuronal HT-22 cells and protected against hydrogen peroxide (H2O2)-induced neuronal cell death. Transduced PEP-1–CBR1 protein drastically inhibited H2O2-induced reactive oxygen species production, the oxidation of intracellular macromolecules, and the activation of mitogen-activated protein kinases, as well as cellular apoptosis. Furthermore, we demonstrated that transduced PEP-1–CBR1 protein markedly protected against neuronal cell death in the CA1 region of the hippocampus resulting from ischemic injury in an animal model. In addition, PEP-1–CBR1 protein drastically reduced activation of glial cells and lipid peroxidation in an animal model. These results indicate that PEP-1–CBR1 protein significantly protects against oxidative-stress-induced neuronal cell death in vitro and in vivo. Therefore, we suggest that PEP-1–CBR1 protein may be a therapeutic agent for the treatment of ischemic injuries as well as oxidative-stress-induced cell damage and death.  相似文献   

3.
NADPH derived from glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, has been implicated not only to promote reduced glutathione (GSH) but also enhance oxidative stress in specific cellular conditions. In this study, the effects of G6PD antisense oligodeoxynucleotides (AS-ODNs) was examined on the CA1 pyramidal neurons following transient cerebral ischemia. Specifically knockdown of G6PD protein expression in hippocampus CA1 subregion at early reperfusion period (1-24 h) with a strategy to pre-treated G6PD AS-ODNs significantly reduced G6PD activity and NADPH level, an effect correlated with attenuation of NADPH oxidase activation and superoxide anion production. Concomitantly, pre-treatment of G6PD AS-ODNs markedly reduced oxidative DNA damage and the delayed neuronal cell death in rat hippocampal CA1 region induced by global cerebral ischemia. By contrast, knockdown of G6PD protein at late reperfusion period (48-96 h) increased oxidative DNA damage and exacerbated the ischemia-induced neuronal cell death in hippocampal CA1 region, an effect associated with reduced NADPH level and GSH/GSSG ratio. These findings indicate that G6PD not only plays a role in oxidative neuronal damage but also a neuroprotective role during different ischemic reperfusion period. Therefore, G6PD mediated oxidative response and redox regulation in the hippocampal CA1 act as the two sides of the same coin and may represent two potential applications of G6PD during different stage of cerebral ischemic reperfusion.  相似文献   

4.
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H2TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.  相似文献   

5.
Transduced Tat-SOD fusion protein protects against ischemic brain injury   总被引:7,自引:0,他引:7  
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD), is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that when Tat-SOD fusion protein is transduced into pancreatic beta cells it protects the beta cells from destruction by relieving oxidative stress in ROS-implicated diabetes (Eum et al., 2004). In the present study, we investigated the protective effects of Tat-SOD fusion protein against neuronal cell death and ischemic insults. When Tat-SOD was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Immunohistochemical analysis revealed that Tat-SOD injected intraperitoneally (i.p.) into mice has access to various tissues including brain neurons. When i.p. injected into gerbils, Tat-SOD prevented neuronal cell death in the hippocampus in response to transient fore-brain ischemia. These results suggest that Tat-SOD provides a strategy for therapeutic delivery in various hu-man diseases, including stroke, related to this anti-oxidant enzyme or to ROS.  相似文献   

6.
Daphnetin (DAP), a coumarin derivative, has been reported to have multiple pharmacological actions including analgesia, antimalarial, anti-arthritic, and anti-pyretic properties. It is unclear whether DAP has neuroprotective effects on ischemic brain injury. In this study, we found that DAP treatment (i.c.v.) reduced the infarct volume at 24 h after ischemia/reperfusion injury and improved neurological behaviors in a middle cerebral artery occlusion mouse model. Moreover, we provided evidences that DAP had protective effects on infarct volume in neonate rats even it was administrated at 4 h after cerebral hypoxia/ischemia injury. To explore its neuroprotective mechanisms of DAP, we examined the protection of DAP on glutamate toxicity-induced cell death in hippocampal HT-22 cells. Our results demonstrated that DAP protected against glutamate toxicity in HT-22 cells in a concentration-dependent manner. Further, we found that DAP maintained the cellular levels of glutathione and superoxide dismutase activity, suggesting the anti-oxidatant activity of DAP. Since DAP has been used for the treatment of coagulation disorder and rheumatoid arthritis for long time with a safety profile, DAP will be a promising agent for the treatment of stroke.  相似文献   

7.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

8.
Yang  Lan  Ma  Yan-Mei  Shen  Xi-Lin  Fan  Yu-Cheng  Zhang  Jian-Zhong  Li  P. Andy  Jing  Li 《Neurochemical research》2020,45(8):1888-1901

Selenium has been shown to possess antioxidant and neuroprotective effects by modulating mitochondrial function and activating mitochondrial biogenesis. Our previous study has also suggested that selenium protected neurons against glutamate toxicity and hyperglycemia-induced damage by regulating mitochondrial fission and fusion. However, it is still not known whether the mitochondrial biogenesis is involved in selenium alleviating hyperglycemia-aggravated cerebral ischemia reperfusion (I/R) injury. The object of this study is to define whether selenium protects neurons against hyperglycemia-aggravated cerebral I/R injury by promoting mitochondrial biogenesis. In vitro oxygen deprivation plus high glucose model decreased cell viability, enhanced reactive oxygen species production, and meanwhile stimulated mitochondrial biogenesis signaling. Pretreated with selenium significantly decreased cell death and further activated the mitochondrial biogenesis signaling. In vivo 30 min of middle cerebral artery occlusion in the rats under hyperglycemic condition enhanced neurological deficits, enlarged infarct volume, exacerbated neuronal damage and oxidative stress compared with normoglycemic ischemic rats after 24 h reperfusion. Consistent to the in vitro results, selenium treatment alleviated ischemic damage in hyperglycemic ischemic animals. Furthermore, selenium reduced the structural changes of mitochondria caused by hyperglycemic ischemia and further promoted the mitochondrial biogenesis signaling. Selenium activates mitochondrial biogenesis signaling, protects mitochondrial structure integrity and ameliorates cerebral I/R injury in hyperglycemic rats.

  相似文献   

9.
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.  相似文献   

10.
Oxidative stress‐induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat‐Atox1 and examined the roles of Tat‐Atox1 in oxidative stress‐induced hippocampal HT‐22 cell death and an ischaemic injury animal model. Tat‐Atox1 effectively transduced into HT‐22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)‐induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat‐Atox1 regulated cellular survival signalling such as p53, Bad/Bcl‐2, Akt and mitogen‐activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat‐Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat‐Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat‐Atox1 protects against oxidative stress‐induced HT‐22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat‐Atox1 has potential as a therapeutic agent for the treatment of oxidative stress‐induced ischaemic damage.  相似文献   

11.
Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D- pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen–glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury.  相似文献   

12.
Reactive oxygen species (ROS) are known to participate in neurodegeneration after ischemia–reperfusion. With the aid of ROS, the calpain-induced lysosomal rupture provokes ischemic neuronal death in the cornu Ammonis (CA) 1 of the hippocampus; however, the target proteins of ROS still remain unknown. Here a proteomic analysis was done to identify and characterize ROS-induced carbonyl modification of proteins in the CA1 of the macaque monkey after transient whole-brain ischemia followed by reperfusion. We found that carbonyl modification of heat shock 70-kDa protein 1 (Hsp70-1), a major stress-inducible member of the Hsp70 family, was extensively increased before the neuronal death in the CA1 sector, and the carbonylation site was identified to be Arg469 of Hsp70-1. The CA1 neuronal death conceivably occurs by calpain-mediated cleavage of carbonylated Hsp70 that becomes prone to proteolysis with the resultant lysosomal rupture. In addition, the carbonyl levels of dihydropyrimidinase-like 2 isoform 2, glial fibrillary acidic protein, and β-actin were remarkably increased in the postischemic CA1. Therefore, ischemia–reperfusion-induced oxidative damage to these proteins in the CA1 may lead to loss of the neuroprotective function, which contributes to neuronal death.  相似文献   

13.
BackgroundReactive oxygen species are grossly produced in the brain after cerebral ischemia and reperfusion causing neuronal cell death. Mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Therefore, limited uncoupling of oxidative phosphorylation could be beneficial for cells exposed to deleterious oxidative stress-associated conditions by preventing excessive generation of reactive oxygen species.MethodsProtonophoric and uncoupling activities of different peptides were measured using pyranine-loaded liposomes and isolated mitochondria. To evaluate the effect of glutamate-substituted analog of gramicidin A ([Glu1]gA) administration on the brain ischemic damage, we employed the in vitro model of neuronal hypoxia using primary neuronal cell cultures and the in vivo model of cerebral ischemia induced in rats by the middle cerebral artery occlusion.Results[Glu1]gA was the most effective in proton-transferring activity among several N-terminally substituted analogs of gramicidin A tested in liposomes and rat brain and liver mitochondria. The peptides were found to be protective against ischemia-induced neuronal cell death and they lowered mitochondrial membrane potential in cultured neurons and diminished reactive oxygen species production in isolated brain mitochondria. The intranasal administration of [Glu1]gA remarkably diminished the infarct size indicated in MR-images of a brain at day 1 after the middle cerebral artery occlusion. In [Glu1]gA-treated rats, the ischemia-induced brain swelling and behavioral dysfunction were significantly suppressed.ConclusionsThe glutamate-substituted analogs of gramicidin A displaying protonophoric and uncoupling activities protect neural cells and the brain from the injury caused by ischemia/reperfusion.General significance[Glu1]gA may be potentially used as a therapeutic agent to prevent neuron damage after stroke.  相似文献   

14.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

15.
Oxidative stress plays an important role in the pathological processes of ischemic brain damage. Many antioxidants have been shown to protect against cerebral ischemia injury by inhibiting oxidative stress both in vitro and in vivo. 20-Hydroxyecdysone (20E), an ecdysteroid hormone, exhibits antioxidative effects. For the work described in this paper, we used an in vitro oxidative damage model and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of 20E and the mechanisms related to these effects. Treatment of cells with H2O2 led to neuronal injury, intracellular ROS/RNS generation, mitochondrial membrane potential dissipation, cellular antioxidant potential descent, an increase in malondialdehyde (MDA) and an elevation of intracellular [Ca2+], all of which were markedly attenuated by 20E. Inhibition of the activation of the ASK1-MKK4/7-JNK stress signaling pathway and cleaved caspase-3 induced by oxidative stress were involved in the neuroprotection afforded by 20E. In addition, 20E reduced the expression of iNOS protein by inhibition of NF-κB activation. The neuroprotective effect of 20E was also confirmed in vivo. 20E significantly decreased infarct volume and the neurological deficit score, restored antioxidant potential and inhibited the increase in MDA and TUNEL-positive and cleaved caspase-3-positive cells in the cerebral cortex in MCAO rats. Together, these results support that 20E protects against cerebral ischemia injury by inhibiting ROS/RNS production and modulating oxidative stress-induced signal transduction pathways.  相似文献   

16.
Oxidative damage due to ischemia/reperfusion has been implicated as one of the leading causes for delayed neuronal cell death in a number of neurodegenerative diseases, including stroke. The purpose of this research was to investigate whether oral administration of a fermented grain food mixture (AOB(R)) might offer protective effects against ischemia/reperfusion-induced neuronal damage in Mongolian gerbils, a model known for delayed neuronal death in the hippocampal CA1 region. Histological analysis revealed that AOB administration ad libitum for 3 weeks (preoperative administration) and 1 week (postoperative administration) dose-dependently suppressed the induction of transient ischemia/reperfusion-induced neuronal cell death. TUNEL assay also revealed that AOB suppressed it by inhibiting the induction of apoptosis. A significant increase of superoxide dismutase-like (SOD-like) activity was observed in the hippocampal CA1 region of the AOB-treated gerbil. Furthermore, immunoblot analysis showed that AOB administration down-regulated the expression of heat shock proteins HSP27 and HSP70 in the same region. These results indicated that oral administration of AOB protected against ischemia/reperfusion-induced brain injury by minimizing oxidative damage via its SOD-like activity and inhibiting apoptosis.  相似文献   

17.
Excessive production of reactive oxygen species (ROS), along with dysfunction of the antioxidant defense system, such as that involving superoxide dismutase (SOD), may play a major role in neuronal death following status epilepticus (SE). Neurosteroids, which are allosteric modulators of the GABAA receptor in cerebral metabolism, have been suggested as being neuroprotective in various animal models; however, their effect to preventing ROS has not been examined. Herein, we investigate the neuroprotective role of allopregnanolone, the prototypical neurosteroid in the brain, in relation to the ROS-mediated neuronal injury. Adult male C57BL/6 mice were subjected to SE and treated with allopregnanolone. Hippocampal cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and ROS production was investigated by in situ detection of oxidized hydroethidine. SOD2 expression was analyzed by both western blot and immunofluorescent staining in the hippocampal subfields. In mice treated with allopregnanolone after SE, hippocampal cell death, DNA fragmentation, oxidative DNA damage, and ROS production were reduced significantly compared to mice subjected to vehicle treatment after SE. Hippocampal SOD2 expression was significantly increased by allopregnanolone. These finding suggest that allopregnanolone plays a neuroprotective role, with not only anticonvulsant but also antioxidant effects, by increasing SOD2 in pilocarpine-induced SE model.  相似文献   

18.
Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 μmol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro , neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity – that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo .  相似文献   

19.
Glial (GLT-1 and GLAST) and neuronal (EAAC1) high-affinity transporters mediate the sodium dependent glutamate reuptake in mammalian brain. Their dysfunction leads to neuronal damage by allowing glutamate to remain in the synaptic cleft for a longer duration. The purpose of the present study is to understand their contribution to the ischemic delayed neuronal death seen in gerbil hippocampus following transient global cerebral ischemia. The protein levels of these three transporters were studied by immunoblotting as a function of reperfusion time (6 h to 7 days) following a 10 min occlusion of bilateral common carotid arteries in gerbils. In the vulnerable hippocampus, there was a significant decrease in the protein levels of GLT-1 (by 36-46%, P < 0.05; between 1 and 3 days of reperfusion) and EAAC1 (by 42-68%, P < 0.05; between 1 and 7 days of reperfusion). Histopathological evaluation showed no neuronal loss up to 2 days of reperfusion but an extensive neuronal loss (by approximately 84%, P < 0.01) at 7 days of reperfusion in the hippocampal CA1 region. The time frame of GLT-1 dysfunction (1-3 days of reperfusion) precedes the initiation of delayed neuronal death (2-3 days of reperfusion). This suggests GLT-1 dysfunction as a contributing factor for the hippocampal neuronal death following transient global cerebral ischemia. Furthermore, decreased EAAC1 levels may contribute to GABAergic dysfunction and excitatory/inhibitory imbalance following transient global ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号