首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An octanol/aqueous two-phase process for the enzymatic production of (R)-phenylacetylcarbinol (PAC) has been investigated further with regard to optimal pH control and replacement of 2.5?M MOPS buffer by a low cost solute. The specific rate of PAC production in the 2.5?M MOPS system controlled at pH?7 was 0.60?mg?U?1?h?1 (reaction completed at 34?h), a 1.6 times improvement over the same 2.5?M MOPS system without pH control (0.39?mg?U?1?h?1 at 49?h). An improved stability of PDC was evident at the end of biotransformation for the pH-controlled system with 84% residual carboligase activity, while 23% of enzyme activity remained in the absence of pH control. Lowering the MOPS concentration to 20?mM resulted in a lower benzaldehyde concentration in the aqueous phase with a major increase in the formation of by-product acetoin and three times decreased PAC production (0.21?mg?U?1?h?1). Biotransformation with 20?mM MOPS and 2.5?M DPG as inexpensive replacement of high MOPS concentrations provided similar aqueous phase benzaldehyde concentrations compared to 2.5?M MOPS and resulted in a comparable PAC concentration (92.1?g?L?1 in the total reaction volume in 47?h) with modest formation of acetoin.  相似文献   

2.
Lipase-catalyzed glycerolysis of triolein has been examined using a group of tetraammonium-based ionic liquids (ILs) as media, specifically with functional groups in cation part. The results demonstrated that the reaction evolution and profile specificity of respective IL system could be quantitatively associated with the structural characteristics of the IL by means of quantum chemical and COSMO-RS calculation. Misfit interaction, Van der Waals interaction and chemical potential, etc. derived from COSMO-RS calculation are shown to be effective measures to delineate multiple interactions of ILs and then can be used to understand the effects of ILs on reactions. The hydrophobic substituents in the cation are found to contribute to the increase of triolein solubility and enhancement of initial reaction rate; while strong polar anion and polyethoxyl and free hydroxyl groups in the cation part dictate improved product selectivity through reducing activity coefficients of monoglycerides. Integration of these structures into the same molecule constitutes a promising group of ILs that could produce over 90% monoglyceride with almost 100% triglyceride conversion, as well as bulky productivity, of particular potential for industrial applications. Overall, this work has presented a first attempt to characterize the IL structure-dependency of reaction specificity by associating structural variations of ILs with thermodynamic property changes of resided compounds and subsequent effects on reaction specificity. This might be of general value to help to understand the multiple solvation interaction among IL reaction systems at molecular level and promote the application of IL-mediated reactions to practical interests.  相似文献   

3.
An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.  相似文献   

4.
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water‐in‐oil or oil‐in‐water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil‐in‐water emulsions), the imidazolium‐based IL acts as an enhancer of the lipase catalytic capacity, super‐activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1473–1480, 2015  相似文献   

5.
An octanol/aqueous two-phase process for the enzymatic production of (R)-phenylacetylcarbinol (PAC) has been investigated further with regard to optimal pH control and replacement of 2.5 M MOPS buffer by a low cost solute. The specific rate of PAC production in the 2.5 M MOPS system controlled at pH 7 was 0.60 mg U-1 h-1 (reaction completed at 34 h), a 1.6 times improvement over the same 2.5 M MOPS system without pH control (0.39 mg U-1 h-1 at 49 h). An improved stability of PDC was evident at the end of biotransformation for the pH-controlled system with 84% residual carboligase activity, while 23% of enzyme activity remained in the absence of pH control. Lowering the MOPS concentration to 20 mM resulted in a lower benzaldehyde concentration in the aqueous phase with a major increase in the formation of by-product acetoin and three times decreased PAC production (0.21 mg U-1 h-1). Biotransformation with 20 mM MOPS and 2.5 M DPG as inexpensive replacement of high MOPS concentrations provided similar aqueous phase benzaldehyde concentrations compared to 2.5 M MOPS and resulted in a comparable PAC concentration (92.1 g L-1 in the total reaction volume in 47 h) with modest formation of acetoin.  相似文献   

6.
The synthetic effect of the combination use of ultrasound irradiation (UI) and ionic liquid (IL) on improving enzyme activity was studied when they were employed in isomerization of glucose to fructose by immobilized glucose isomerase (IGI, produced from streptomyces murinus and immobilized on silica). Both of UI and IL [EMIM][Cl], which was screened as the best medium for this reaction, were found to increase the enzyme activity in isomerization reaction. And a further increase of enzyme activity was observed by combination use of UI and IL. A systematic screening and optimization of the reaction parameters in ILs under UI on the IGI activity were performed. Under the optimum reaction conditions, 45.3% yield of fructose was achieved in 10 h under UI in [EMIM][Cl], compared to only 41.5% yield under stirring in [EMIM][Cl], 44.2% under UI without [EMIM][Cl] and 38.9% under stirring without [EMIM][Cl] in 12 h, respectively. High thermal stability and reusability of IGI was also observed under UI in [EMIM][Cl]. These results indicated that the combination use of UI and IL might be a fast and efficient method for enzymatic isomerization of glucose to fructose.  相似文献   

7.
This work examined the lipase-catalyzed glycerolysis of triglycerides (TG) in a list of commercially available ionic liquids (ILs) with varied cations and anions for the purpose of developing an efficient reaction protocol for diglyceride (DG) production and to understand whether ILs could assist the reaction systems. The reaction performances (reaction rate, TG conversion and DG yield) were found to be greatly dependent on the structure and property of ILs. The reactions in [TOMA·Tf2N] and Ammoeng 120 produced comparable yield of DG to those most efficient conventional systems but with less by-products. Temperature enhancement generally yields positive effect on the conversion of TG, which was much more significant for the ILs with high viscosity. Unusually, increasing substrate concentration in many types of ILs led to enhanced conversion and yield; whereas the increase of glycerol/TG ratio resulted in a dramatic improvement of the reactions in the ILs with strong acidic anions. This work also sorted out some promising IL candidates, namely the ILs with good DG formation selectivity and the ones being able to achieve high TG conversion, which offered possibility to design binary IL systems. Overall, this study presented the first attempt concerning evaluation and characterization of lipase-catalyzed glycerolysis of TG for DG production in IL-based systems.  相似文献   

8.
An automated method in milliliter scale was developed for the screening of process parameters concerning the hydrolysis of the flavonoid rutin catalyzed by the rhamnosidase activity of naringinase from Penicillium decumbens. Besides the effect of additives such as ionic liquids and low molecular salts, the productivity in a multiple phase system as well as the recyclability of the enzyme in repetitive batches were studied. The hydrophobic ionic liquid (IL) trihexyl(tetradecyl)phosphonium bis(trifluormethylsulfonyl)imide [P(h3)t][Tf2N] was identified to combine the most favorable characteristics out of 23 investigated ILs with regard to enzyme compatibility, substrate solubility and enzyme partition coefficient. Also, for the corresponding cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-butyl-1-methylpyrrolidinium [BMPL] and 1-octyl-3-methylimidazolium [OMIM], the entity with the [Tf2N] anion was best tolerated by the naringinase. With increasing IL content, higher space time yields with up to 1.5 g/(L h) for 80% (v/v) [P(h3)t][Tf2N] were achieved. Enhanced specific enzyme activity was observed in the presence of Ca2+ ions. By addition of [P(h3)t][Tf2N] and calcium chloride, the reactive aqueous phase was successfully used in three repetitive batches with full conversion.  相似文献   

9.
The effect of ions on enzyme activity and stability usually follows the Hofmeister series (or the kosmotropicity order): kosmotropic anions and chaotropic cations stabilize enzymes while chaotropic anions and kosmotropic cations destabilize them. The effect of ionic liquids (ILs) on the enzyme activity/stability/enantioselectivity is complicated especially when there is no or little water presence in the IL media. However, when aqueous solutions of hydrophilic ILs are employed as reaction media, the enzyme seems to follow the Hofmeister series since ILs dissociate into individual ions in water.  相似文献   

10.
稀酸水解玉米芯制备丁二酸   总被引:3,自引:1,他引:3  
利用正交设计得到稀H2SO4水解玉米芯制备混合糖液的优化工艺:玉米芯料液比1∶5(质量体积比),物料粒径250~380μm、H2SO4用量3%(体积分数)、水解温度126℃、反应时间2.5 h。此工艺条件下的总糖收率达90%,总糖质量浓度为60 g/L,发酵抑制物糠醛含量为0.87 g/L,5-羟甲基糠醛含量为0.68 g/L。在此基础上利用活性炭吸附和Ca(OH)2中和对玉米芯混合糖液进行脱毒及脱盐处理,SO42-脱除率达96%,色素脱除率为96%,糠醛、5-羟甲基糠醛及多酚类物质脱除率均高于50%。处理后的玉米芯多组分糖液作为产琥珀酸放线杆菌(Actinobacillus succino-genes)NJ113的发酵C源,当培养基中初始总糖质量浓度为50 g/L时,丁二酸收率为61.68%,丁二酸质量浓度为30.8 g/L;初始总糖质量浓度为70 g/L时,丁二酸收率仍可达50%以上,丁二酸质量浓度为35.2 g/L。发酵实验表明,将经过脱毒脱盐处理的玉米芯多组分糖液替代葡萄糖作为C源发酵制备丁二酸具有可行性。  相似文献   

11.
Tannase production by Aspergillus niger Aa-20 was studied in submerged (SmF) and solid-state (SSF) fermentation systems with different tannic acid and glucose concentrations. Tannase activity and productivity were at least 2.5 times higher in SSF than in SmF. Addition of high tannic acid concentrations increased total tannase activity in SSF, while in SmF it was decreased. In SmF, total tannase activity increased from 0.57 to 1.03 IU/mL, when the initial glucose concentration increased from 6.25 to 25 g/L, but a strong catabolite repression of tannase synthesis was observed in SmF when an initial glucose concentration of 50 g/L was used. In SSF, maximal values of total tannase activity decreased from 7.79 to 2.51 IU when the initial glucose concentration was increased from 6.25 to 200 g/L. Kinetic results on tannase production indicate that low tannase activity titers in SmF could be associated to an enzyme degradation process which is not present in SSF. Tannase titers produced by A. niger Aa-20 are fermentation system-dependent, favoring SSF over SmF. Journal of Industrial Microbiology & Biotechnology (2001) 26, 296–302. Received 07 July 2000/ Accepted in revised form 15 February 2001  相似文献   

12.
Zhang BB  Lou WY  Chen WJ  Zong MH 《PloS one》2012,7(5):e37641
Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2'-hydroxyl)ethyl-3-methylimidazolium nitrate (C(2)OHMIM·NO(3)) was considered as the most suitable IL for the bioreduction with the fastest initial reaction rate, the highest yield and the highest product e.e., which may be due to the good biocompatibility with the cells. For a better understanding of the bioreduction performed in the C(2)OHMIM·NO(3)-containing co-solvent system, the effects of several crucial variables were systematically investigated. The optimal C(2)OHMIM·NO(3) content, substrate concentration, buffer pH, co-substrate concentration and temperature were 10% (v/v), 3.0 mmol/L, 5.0, 98.1 mmol/L and 30°C, respectively. Under the optimal conditions, the initial reaction rate, the maximum yield and the product e.e. were 17.3 μmol/h g(cell), 95.2% and >99.9%, respectively, which are much better than the corresponding results previously reported. Moreover, the immobilized cells remained more than 83% of their initial activity even after being used repeatedly for 10 batches in the C(2)OHMIM·NO(3)-containing system, exhibiting excellent operational stability.  相似文献   

13.
Lou WY  Zong MH 《Chirality》2006,18(10):814-821
Efficient enantioselective acylation of (R,S)-1-trimethylsilylethanol {(R,S)-1-TMSE} with vinyl acetate catalyzed by immobilized lipase from Candida antarctica B (i.e., Novozym 435) was successfully conducted in ionic liquids (ILs). A remarkable enhancement in the initial rate and the enantioselectivity of the acylation was observed by using ILs as the reaction media when compared to the organic solvents tested. Also, the activity, enantioselectivity, and thermostability of Novozym 435 increased with increasing hydrophobicity of ILs. Of the six ILs examined, the IL C4MIm.PF6 gave the fastest initial rate and the highest enantioselectivity, and was consequently chosen as the favorable medium for the reaction. The optimal molar ratio of vinyl acetate to (R,S)-1-TMSE, water activity, and reaction temperature range were 4:1, 0.75, and 40 -50 degrees C, respectively, under which the initial rate and the enantioselectivity (E value) were 27.6 mM/h and 149, respectively. After a reaction time of 6 h, the ee of the remaining (S)-1-TMSE reached 97.1% at the substrate conversion of 50.7%. Additionally, Novozym 435 was effectively recycled and reused in C4MIm.PF6 for five consecutive runs without substantial lose in activity and enantioselectivity. The preparative scale kinetic resolution of (R,S)-1-TMSE in C4MIm.PF6 is shown to be very promising and useful for the industrial production of enantiopure (S)-1-TMSE.  相似文献   

14.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

15.

Background

Ionic liquid (IL) pretreatment has emerged as a promising technique that enables complete utilization of lignocellulosic biomass for biofuel production. However, imidazolium IL has recently been shown to exhibit inhibitory effect on cell growth and product formation of industrial microbes, such as oleaginous microorganisms. To date, the mechanism of this inhibition remains largely unknown.

Results

In this study, the feasibility of [Bmim][OAc]-pretreated rice straw hydrolysate as a substrate for microbial lipid production by Geotrichum fermentans, also known as Trichosporon fermentans, was evaluated. The residual [Bmim][OAc] present in the hydrolysate caused a reduction in biomass and lipid content (43.6 and 28.1%, respectively) of G. fermentans, compared with those of the control (7.8 g/L and 52.6%, respectively). Seven imidazolium ILs, [Emim][DEP], [Emim]Cl, [Amim]Cl, [Bmim]Cl, [Bzmim]Cl, [Emim][OAc], and [Bmim][OAc], capable of efficient pretreatment of lignocellulosic biomass were tested for their effects on the cell growth and lipid accumulation of G. fermentans to better understand the impact of imidazolium IL on the lipid production. All the ILs tested inhibited the cell growth and lipid accumulation. In addition, both the cation and the anion of IL contributed to IL toxicity. The side chain of IL cations showed a clear impact on toxicity. On examining IL anions, [OAc]? was found to be more toxic than those of [DEP]? and Cl?. IL exhibited its toxicity by inhibiting sugar consumption and key enzyme (malic enzyme and ATP-citrate lyase) activities of G. fermentans. Cell membrane permeability was also altered to different extents in the presence of various ILs. Scanning electron microscopy revealed that IL induces fibrous structure on the surface of G. fermentans cell, which might represent an adaptive mechanism of the yeast to IL.

Conclusions

This work gives some mechanistic insights into the impact of imidazolium IL on the cell growth and lipid accumulation of oleaginous yeast, which is important for IL integration in lignocellulosic biofuel production, especially for microbial lipid production.
  相似文献   

16.
3-Hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite in the biological route of 1,3-propanediol biosynthesis from glycerol. 3-HPA accumulated in culture medium would arouse an irreversible cessation of the fermentation process. The role of substrate (glycerol) on 3-HPA accumulation in aerobic fermentation was investigated in this paper. 1,3-Propanediol oxidoreductase and glycerol dehydratase, two key enzyme catalyzing reactions of 3-HPA formation and consumption, were sensitive to high concentration of 3-HPA. When the concentration of 3-HPA increased to a higher level in medium (ac 10 mmol/L), the activity of 1,3-propanediol oxidoreductase in cell decreased correspondingly, which led to decrease of the 3-HPA conversion rate, then the 3-HPA concentration increasing was accelerated furthermore. 3-HPA accumulation in culture medium was triggered by this positive feedback mechanism. In the cell exponential growth phase, the reaction catalyzed by 1,3-propanediol oxidoreductase was the rate limiting step in 1,3-propanediol production. The level of 3-HPA in culture medium could be controlled by the substrate (glycerol) concentration, and lower level of glycerol could avoid 3-HPA accumulating to a high, lethal concentration. In fed batch fermentation, under the condition of initial glycerol concentration 30 g/L, and keeping glycerol concentration lower than 7–8 g/L in cell exponential growth phase, 3-HPA accumulation could not be incurred. Based on this result, a glycerol feeding strategy was set up in fed batch fermentation. Under the optimized condition, 50.1 g/L of 1,3-propanediol was produced in 24 h, and 73.1 g/L of final 1,3-propanediol concentration was obtained in 54 h.  相似文献   

17.
The cellsof Rhodococcus rhodochrous M33, which produce a nitrile hydratase enzyme, were immobilized in acrylamide-based polymer gels. The optimum pH and temperature for the activity of nitrile hydratase in both the free and immobilized cells were 7.4 and 45°C, respectively, yet the optinum temperature for acrylamide production by the immobilized cells was 20°C. The nitrile hydratase of the immobilized cells was more stable with acrylamide than that of the free cells. Under optimal conditions, the final acrylamide concentration reached about 400 g/L with a conversion yield of almost 100% after 8 h of reaction when using 150 g/L of immobilized cells corresponding to a 1.91 g-dry cell weight/L. The enzyme activity of the immobilized cells rapidly decreased with repeated use. However, the quality of the acrylamide produced by the immobilized cells was much better than that produced by the free cells in terms of color, salt content, turbidity, and foam formation. The quality of the aqueous acrylamide solution obtained was found to be of commercial use without further purification.  相似文献   

18.
For the enhancement of enzyme activity, application of ultrasound irradiation on lipase-catalyzed esterification of fructose with palmitic acid in ionic liquids (ILs) mixture containing supersaturated fructose solution was investigated. In the mixture of [Bmim][TfO] and [Omim][Tf2N] (1:1, v/v), 1.44 times higher enzyme activity (29.2 μmoL/min/g) was achieved under ultrasound irradiation. Besides, ultrasound irradiation enhanced enzyme stability in viscous ILs mixture. After 5 times reuse of Novozym 435 and ILs mixture, 84.4% of initial enzyme activity was remained under ultrasound irradiation, while the residual activity using magnetic stirring only method was 76.2%. These results show that enzymatic reaction in viscous ILs mixture under ultrasound irradiation is an effective method for enzyme activity, as well as, enzyme stability resulting in economic competitiveness of green process.  相似文献   

19.
过量表达NADH氧化酶加速光滑球拟酵母合成丙酮酸   总被引:1,自引:0,他引:1  
[目的]进一步提高光滑球拟酵母(Torulopsis glabrata)发酵生产丙酮酸的生产强度.[方法]将来源于乳酸乳球菌(Lactococcus lactis)中编码形成水的NADH氧化酶noxE基因过量表达于丙酮酸工业生产菌株T. glabrata CCTCC M202019中,获得了一株NADH氧化酶活性为34.8 U/mg蛋白的重组菌T. glabrata-PDnoxE.[结果]与出发菌株T. glabrata CCTCC M202019相比,细胞浓度、葡萄糖消耗速率和丙酮酸生产强度分别提高了168%、44.9%和12%,发酵进行到36 h葡萄糖消耗完毕.补加50 g/L葡萄糖继续发酵20 h,则使丙酮酸浓度提高到67.2 g/L.葡萄糖消耗速度和丙酮酸生产强度增加的原因在于形成水的NADH氧化酶过量表达,导致NADH和ATP含量分别降低了18.1%和15.8%.而NAD<' 增加了11.1%.[结论]增加细胞内NAD<' 含量能有效地提高酵母细胞葡萄糖的代谢速度及目标代谢产物的生产强度.  相似文献   

20.
The optimal feed rate profiles of glucose and ammonium hydroxide were calculated using a proposed model, and implemented for the production of poly-beta-hydroxybutyric acid (PHB) by Alcaligenes eutrophus. By implementing these optimal feed rates with a high glucose feed concentration of 700 g/L and an ammonium hydroxide concentration of 7%(w/w), it was possible to achieve a high final cell concentration of 141 g/L and a high PHB concentration of 105 g/L in 40 h of fed-batch operation. The PHB productivity was as high as 2.63 g/(L hr). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 697-705, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号