首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leprosy is a chronic infection of the skin and nerves caused by Mycobacterium leprae and the newly discovered Mycobacterium lepromatosis. Human leprosy has been documented for millennia in ancient cultures. Recent genomic studies of worldwide M. leprae strains have further traced it along global human dispersals during the past ∼100,000 years. Because leprosy bacilli are strictly intracellular, we wonder how long humans have been affected by this disease-causing parasite. Based on recently published data on M. leprae genomes, M. lepromatosis discovery, leprosy bacilli evolution, and human evolution, it is most likely that the leprosy bacilli started parasitic evolution in humans or early hominids millions of years ago. This makes leprosy the oldest human-specific infection. The unique adaptive evolution has likely molded the indolent growth and evasion from human immune defense that may explain leprosy pathogenesis. Accordingly, leprosy can be viewed as a natural consequence of a long parasitism. The burden of leprosy may have affected minor selection on human genetic polymorphisms.  相似文献   

2.
True incidence of leprosy and its impact on transmission will not be understood until a tool is available to measure pre-symptomatic infection. Diagnosis of leprosy disease is currently based on clinical symptoms, which on average take 3–10 years to manifest. The fact that incidence, as defined by new case detection, equates with prevalence, i.e., registered cases, suggests that the cycle of transmission has not been fully intercepted by implementation of multiple drug therapy. This is supported by a high incidence of childhood leprosy. Epidemiological screening for pre-symptomatic leprosy in large endemic populations is required to facilitate targeted chemoprophylactic interventions. Such a test must be sensitive, specific, simple to administer, cost-effective, and easy to interpret. The intradermal skin test method that measures cell-mediated immunity was explored as the best option. Prior knowledge on skin testing of healthy subjects and leprosy patients with whole or partially fractionated Mycobacterium leprae bacilli, such as Lepromin or the Rees'' or Convit'' antigens, has established an acceptable safety and potency profile of these antigens. These data, along with immunoreactivity data, laid the foundation for two new leprosy skin test antigens, MLSA-LAM (M. leprae soluble antigen devoid of mycobacterial lipoglycans, primarily lipoarabinomannan) and MLCwA (M. leprae cell wall antigens). In the absence of commercial interest, the challenge was to develop these antigens under current good manufacturing practices in an acceptable local pilot facility and submit an Investigational New Drug to the Food and Drug Administration to allow a first-in-human phase I clinical trial.  相似文献   

3.
Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.  相似文献   

4.
Regulatory T (Treg) cells are known for their role in maintaining self-tolerance and balancing immune reactions in autoimmune diseases and chronic infections. However, regulatory mechanisms can also lead to prolonged survival of pathogens in chronic infections like leprosy and tuberculosis (TB). Despite high humoral responses against Mycobacterium leprae (M. leprae), lepromatous leprosy (LL) patients have the characteristic inability to generate T helper 1 (Th1) responses against the bacterium. In this study, we investigated the unresponsiveness to M. leprae in peripheral blood mononuclear cells (PBMC) of LL patients by analysis of IFN-γ responses to M. leprae before and after depletion of CD25+ cells, by cell subsets analysis of PBMC and by immunohistochemistry of patients'' skin lesions. Depletion of CD25+ cells from total PBMC identified two groups of LL patients: 7/18 (38.8%) gained in vitro responsiveness towards M. leprae after depletion of CD25+ cells, which was reversed to M. leprae-specific T-cell unresponsiveness by addition of autologous CD25+ cells. In contrast, 11/18 (61.1%) remained anergic in the absence of CD25+ T-cells. For both groups mitogen-induced IFN-γ was, however, not affected by depletion of CD25+ cells. In M. leprae responding healthy controls, treated lepromatous leprosy (LL) and borderline tuberculoid leprosy (BT) patients, depletion of CD25+ cells only slightly increased the IFN-γ response. Furthermore, cell subset analysis showed significantly higher (p = 0.02) numbers of FoxP3+ CD8+CD25+ T-cells in LL compared to BT patients, whereas confocal microscopy of skin biopsies revealed increased numbers of CD68+CD163+ as well as FoxP3+ cells in lesions of LL compared to tuberculoid and borderline tuberculoid leprosy (TT/BT) lesions. Thus, these data show that CD25+ Treg cells play a role in M. leprae-Th1 unresponsiveness in LL.  相似文献   

5.
Mycobacterium lepromatosis is a newly discovered leprosy-causing organism. Preliminary phylogenetic analysis of its 16S rRNA gene and a few other gene segments revealed significant divergence from Mycobacterium leprae, a well-known cause of leprosy, that justifies the status of M. lepromatosis as a new species. In this study we analyzed the sequences of 20 genes and pseudogenes (22,814 nucleotides). Overall, the level of matching of these sequences with M. leprae sequences was 90.9%, which substantiated the species-level difference; the levels of matching for the 16S rRNA genes and 14 protein-encoding genes were 98.0% and 93.1%, respectively, but the level of matching for five pseudogenes was only 79.1%. Five conserved protein-encoding genes were selected to construct phylogenetic trees and to calculate the numbers of synonymous substitutions (dS values) and nonsynonymous substitutions (dN values) in the two species. Robust phylogenetic trees constructed using concatenated alignment of these genes placed M. lepromatosis and M. leprae in a tight cluster with long terminal branches, implying that the divergence occurred long ago. The dS and dN values were also much higher than those for other closest pairs of mycobacteria. The dS values were 14 to 28% of the dS values for M. leprae and Mycobacterium tuberculosis, a more divergent pair of species. These results thus indicate that M. lepromatosis and M. leprae diverged ∼10 million years ago. The M. lepromatosis pseudogenes analyzed that were also pseudogenes in M. leprae showed nearly neutral evolution, and their relative ages were similar to those of M. leprae pseudogenes, suggesting that they were pseudogenes before divergence. Taken together, the results described above indicate that M. lepromatosis and M. leprae diverged from a common ancestor after the massive gene inactivation event described previously for M. leprae.Leprosy, one of the oldest human diseases, remains a significant public health problem in many developing countries (8). Mycobacterium leprae was the only known cause of leprosy until recently, when a new mycobacterium, Mycobacterium lepromatosis, was found to be the cause of diffuse lepromatous leprosy (DLL), a unique form of leprosy endemic in Mexico and the Caribbean (17). The discovery of this new species may provide an explanation for the clinical and geographic variability of leprosy.The initial phylogenetic analysis of M. lepromatosis was carried out using the sequences of the 16S rRNA gene and segments of groEL, rpoB, and other genes (total, 4.99 kb) (17). This study revealed significant sequence differences between M. lepromatosis and all known Mycobacterium species and placed M. lepromatosis closest to M. leprae. However, the sequence variation justified assigning a new species for the new organism instead of classifying it as a variant of M. leprae. All M. leprae strains collected worldwide have been found to be clonal and to differ by only single-nucleotide polymorphism or variable numbers of tandem repeats (24). Also, the genomes of two M. leprae strains, strain TN from India (GenBank accession numbers AL583917 to AL583926) (4) and strain Br4923 from Brazil (GenBank accession number FM211192) (N. Honore et al., unpublished data) share 99.98% identity.Like M. leprae, M. lepromatosis has not been cultivated on artificial media. In addition, our previous study also showed other similarities between these organisms, such as degeneration of mmaA3 into a pseudogene, the presence of unique AT-rich inserted sequences in the 16S rRNA gene, identical six-base tandem repeats in rpoT, similar G+C contents, and great evolutionary distance from other mycobacteria (17).The M. leprae genome (3.3 Mb) is much smaller than the Mycobacterium tuberculosis genome (4.4 Mb) (3, 4). More intriguingly, the M. leprae genome has undergone reductive evolution; ∼40% of the genes are inactivated (4), and ∼50% of the genes of the last common ancestor of M. leprae and M. tuberculosis have been lost (13). On the other hand, the M. leprae genome has been far more stable than the M. tuberculosis genome, and the worldwide clonality of the M. leprae strains paralleled the global spread of M. leprae strains that occurred via human activity and migration during the last ∼100,000 years (24). Recently, by comparing the genomes of M. leprae and M. tuberculosis and by analyzing the ages of the M. leprae pseudogenes, Gomez-Valero et al. (13) estimated that a massive gene inactivation event took place in the M. leprae genome in the last 20 million years.The discovery of M. lepromatosis and its differences from M. leprae make it relevant for further study for diagnosis, treatment, and prevention of DLL. Likewise, the many similarities between these two organisms prompted questions about their evolutionary histories and about how M. lepromatosis became endemic mainly in Mexico, while M. leprae occurs worldwide. In this study, we extended and refined our previous phylogenetic study by determining and analyzing the sequences of 20 genes and pseudogenes of M. lepromatosis. Our findings solidified the phylogeny of this new organism and provided new insights into the history of pseudogenes.  相似文献   

6.
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21–35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America.  相似文献   

7.

Background

Although immunopathology dictates clinical outcome in leprosy, the dynamics of early and chronic infection are poorly defined. In the tuberculoid region of the spectrum, Mycobacterium leprae growth is restricted yet a severe granulomatous lesion can occur. The evolution and maintenance of chronic inflammatory processes like those observed in the leprosy granuloma involve an ongoing network of communications via cytokines. IL-10 has immunosuppressive properties and IL-10 genetic variants have been associated with leprosy development and reactions.

Methodology/Principal Findings

The role of IL-10 in resistance and inflammation in leprosy was investigated using Mycobacterium leprae infection of mice deficient in IL-10 (IL-10−/−), as well as mice deficient in both inducible nitric oxide synthase (NOS2−/−) and IL-10 (10NOS2−/−). Although a lack of IL-10 did not affect M. leprae multiplication in the footpads (FP), inflammation increased from C57Bl/6 (B6)<IL-10−/−<NOS2−/−<10NOS2−/−. While IL-10−/− mice exhibited modest FP induration compared to B6, NOS2−/− and 10NOS2−/− mice developed markedly enlarged FP marking distinct phases: early (1 month), peak (3–4 months), and chronic (8 months). IFN-γ-producing CD4+CD44+ cells responding to M. leprae cell wall, membrane, and cytosol antigens and ML2028 (Ag85B) were significantly increased in the evolved granuloma in NOS2−/− FP compared to B6 and IL-10−/− during early and peak phases. In 10NOS2−/− FP, CD4+CD44+ and especially CD8+CD44+ responses were augmented even further to these antigens as well as to ML0380 (GroES), ML2038 (bacterioferritin), and ML1877 (EF-Tu). Moreover, fragmented nerves containing CD4+ cells were present in 10NOS2−/− FP.

Conclusions/Significance

The 10NOS2−/− strain offers insight on the regulation of granuloma formation and maintenance by immune modulators in the resistant forms of leprosy and presents a new model for investigating the pathogenesis of neurological involvement.  相似文献   

8.
Multidrug resistant leprosy, defined as resistance to rifampin, dapsone and fluoroquinolones (FQ), has been described in Mycobacterium leprae. However, the in vivo impact of fluoroquinolone resistance, mainly mediated by mutations in DNA gyrase (GyrA2GyrB2), has not been precisely assessed. Our objective was to measure the impact of a DNA gyrase mutation whose implication in fluoroquinolone resistance has been previously demonstrated through biochemical studies, on the in vivo activity of 3 fluoroquinolones: ofloxacin, moxifloxacin and garenoxacin.

Methodology/Principal Findings

We used the proportional bactericidal method. 210 four-week-old immunodeficient female Nude mice (NMRI-Foxn1nu/Foxn1nu) were inoculated in the left hind footpad with 0.03 ml of bacterial suspension containing 5×103, 5×102, 5×101, and 5×100 M. leprae AFB organisms of strain Hoshizuka-4 which is a multidrug resistant strain harboring a GyrA A91V substitution. An additional subgroup of 10 mice was inoculated with 5×10−1 bacilli in the untreated control group. The day after inoculation, subgroups of mice were treated with a single dose of ofloxacin, moxifloxacin, garenoxacin or clarithromycin at 150 mg/kg dosing. 12 months later mice were sacrificed and M. leprae bacilli were numbered in the footpad. The results from the untreated control group indicated that the infective inoculum contained 23% of viable M. leprae. The results from the moxifloxacin and garenoxacin groups indicated that a single dose of these drugs reduced the percentage of viable M. leprae by 90%, similarly to the reduction observed after a single dose of the positive control drug clarithromycin. Conversely, ofloxacin was less active than clarithromycin.

Conclusion/Significance

DNA gyrase mutation is not always synonymous of lack of in vivo fluoroquinolone activity in M. leprae. As for M. tuberculosis, in vivo studies allow to measure residual antibiotic activity in case of target mutations in M. leprae.  相似文献   

9.
Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.  相似文献   

10.
The aim of this study was to investigate sensitivity disorders in the oral cavity related to the presence of Mycobacterium leprae in the saliva of treatment-naïve patients with leprosy in the state of Amazonas, Brazil. A cross-sectional study was conducted involving 45 subjects with leprosy. The subjects were interviewed to evaluate the sensitivity of the oral cavity. For the detection of M. leprae, saliva and slit-skin smear samples were collected. The samples were analysed using a bacteriological index (BI) protocol and the real-time quantitative polymerase chain reaction (qPCR). The results indicated that 15 of the 45 (33.3%) subjects with leprosy showed decreased oral sensitivity, which confirmed the importance of the oral cavity sensitivity evaluation. There was not a direct relationship between the presence of M. leprae in saliva and changes in oral sensitivity. Positive saliva qPCR results from six (31.6%) of 19 paucibacillary (PB) patients suggested the possibility of a new site for sample collection. Positive results using these diagnostic techniques (BI, slit-skin smear and saliva qPCR) increased to 55.5%, thus opening the possibility of combining these different techniques to increase the rate of positive diagnoses, especially in PB patients.  相似文献   

11.
Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.  相似文献   

12.
13.
Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.  相似文献   

14.
In leprosy, classic diagnostic tools based on bacillary counts and histopathology have been facing hurdles, especially in distinguishing latent infection from active disease and diagnosing paucibacillary clinical forms. Serological tests and IFN-gamma releasing assays (IGRA) that employ humoral and cellular immune parameters, respectively, are also being used, but recent results indicate that quantitative PCR (qPCR) is a key technique due to its higher sensitivity and specificity. In fact, advances concerning the structure and function of the Mycobacterium leprae genome led to the development of specific PCR-based gene amplification assays for leprosy diagnosis and monitoring of household contacts. Also, based on the validation of point-of-care technologies for M. tuberculosis DNA detection, it is clear that the same advantages of rapid DNA detection could be observed in respect to leprosy. So far, PCR has proven useful in the determination of transmission routes, M. leprae viability, and drug resistance in leprosy. However, PCR has been ascertained to be especially valuable in diagnosing difficult cases like pure neural leprosy (PNL), paucibacillary (PB), and patients with atypical clinical presentation and histopathological features compatible with leprosy. Also, the detection of M. leprae DNA in different samples of the household contacts of leprosy patients is very promising. Although a positive PCR result is not sufficient to establish a causal relationship with disease outcome, quantitation provided by qPCR is clearly capable of indicating increased risk of developing the disease and could alert clinicians to follow these contacts more closely or even define rules for chemoprophylaxis.  相似文献   

15.

Background

Leprosy is a chronic disease, caused by Mycobacterium leprae, which poses a serious public health problem worldwide. Its high incidence in people under 15 years old in Ceará state, Brazil, reflects the difficulty of its control. The spectrum of clinical manifestations is associated with the immune response developed, with the Th1 and Th2 responses being related to the paucibacillary and multibacillary forms, respectively. Regulatory T cells (Treg), which can suppress Th1 and Th2 response, have received special attention in the literature and have been associated with development of chronic infections. However, their role in leprosy in individuals under 15 years old has not yet been elucidated. We evaluated the frequency of CD4+/CD8+CD25highFOXP3+ and CD4+/CD8+CD25highFOXP3high cells in leprosy patients and household contacts, in both cases under 15 years old.

Methodology/Principal Findings

PBMC from 12 patients and 17 contacts were cultured for 72 hours with anti-CD3 and anti-CD28 (activators) or with activators associated with total sonicated fraction of M. leprae. After culture, the frequency of CD4+/CD8+ Treg was identified by flow cytometry. Cells stimulated by activators and antigen from multibacillary patients showed Treg frequencies almost two times that of the contacts: CD4+FOXP3+ (21.93±8.43 vs. 13.79±8.19%, p = 0.0500), CD4+FOXP3high (10.33±5.69 vs. 5.57±4.03%, p = 0.0362), CD8+FOXP3+ (13.88±9.19 vs. 6.18±5.56%, p = 0.0230) and CD8+FOXP3high (5.36±4.17 vs. 2.23±2.68%, p = 0.0461). Furthermore, the mean fluorescence intensity of FOXP3 in Treg was higher in multibacillary patients than in the contacts. Interestingly, there was a positive correlation of the bacillary index and number of lesions with the frequency of all Treg evaluated in patients.

Conclusions/Significance

We have demonstrated for the first time that multibacillary leprosy patients under 15 years old have greater CD4+ and CD8+ Treg frequencies and these correlate with clinical and laboratorial aspects of disease. These findings suggest the involvement of these cells in the perpetuation of M. leprae infection.  相似文献   

16.
Summary Immunohistochemical staining of tuberculoid and lepromatous leprosy skin lesions was performed using various rabbit antisera. Macrophages in both stained with serum containing antibodies against lysozyme and alpha-1-antitrypsin, while macrophages in lepromatous leprosy also reacted with other antibodies. An immunoglobulin fraction of positive serum stained following pepsin digestion, indicating that reactivity was not Fc dependent. Positive serum contained antibody againstMycobacterium butyricum, which caused macrophage staining, since affinity-purified antibody did not stain and absorption withM. butyricum removed staining. Staining was also produced by serum of subjects with leprosy or a positive tuberculin test. By immunoblotting, the anti-mycobacterial antibody was directed against surface components ofM. butyricum of molecular weights 20 000–70 000. Electron microscopy showedM. leprae in phagolysosomes of macrophages, while immunoelectron microscopy demonstrated labelling along bacterial cell membranes. Therefore, macrophages in lepromatous leprosy skin lesions stain because they containM. leprae, which reacts with antibody to eitherM. leprae, M. tuberculosis or atypical mycobacteria in human serum and with antibody toM. butyricum in serum from rabbits immunized with various antigens and Freund's complete adjuvant. These results indicate that immunohistochemical studies on leprosy are misleading if performed using intact polyclonal immune sera rather than affinity purified or monoclonal antibodies.  相似文献   

17.
18.
Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.  相似文献   

19.
The Tomb of the Shroud is a first-century C.E. tomb discovered in Akeldama, Jerusalem, Israel that had been illegally entered and looted. The investigation of this tomb by an interdisciplinary team of researchers began in 2000. More than twenty stone ossuaries for collecting human bones were found, along with textiles from a burial shroud, hair and skeletal remains. The research presented here focuses on genetic analysis of the bioarchaeological remains from the tomb using mitochondrial DNA to examine familial relationships of the individuals within the tomb and molecular screening for the presence of disease. There are three mitochondrial haplotypes shared between a number of the remains analyzed suggesting a possible family tomb. There were two pathogens genetically detected within the collection of osteological samples, these were Mycobacterium tuberculosis and Mycobacterium leprae. The Tomb of the Shroud is one of very few examples of a preserved shrouded human burial and the only example of a plaster sealed loculus with remains genetically confirmed to have belonged to a shrouded male individual that suffered from tuberculosis and leprosy dating to the first-century C.E. This is the earliest case of leprosy with a confirmed date in which M. leprae DNA was detected.  相似文献   

20.
Dengue is a potentially fatal acute febrile illness caused by four mosquito-transmitted dengue viruses (DENV-1–4). Although dengue outbreaks regularly occur in many regions of the Pacific, little is known about dengue in the Republic of the Marshall Islands (RMI). To better understand dengue in RMI, we investigated an explosive outbreak that began in October 2011. Suspected cases were reported to the Ministry of Health, serum specimens were tested with a dengue rapid diagnostic test (RDT), and confirmatory testing was performed using RT-PCR and IgM ELISA. Laboratory-positive cases were defined by detection of DENV nonstructural protein 1 by RDT, DENV nucleic acid by RT-PCR, or anti-DENV IgM antibody by RDT or ELISA. Secondary infection was defined by detection of anti-DENV IgG antibody by ELISA in a laboratory-positive acute specimen. During the four months of the outbreak, 1,603 suspected dengue cases (3% of the RMI population) were reported. Of 867 (54%) laboratory-positive cases, 209 (24%) had dengue with warning signs, six (0.7%) had severe dengue, and none died. Dengue incidence was highest in residents of Majuro and individuals aged 10–29 years, and ∼95% of dengue cases were experiencing secondary infection. Only DENV-4 was detected by RT-PCR, which phylogenetic analysis demonstrated was most closely related to a virus previously identified in Southeast Asia. Cases of vertical DENV transmission, and DENV/Salmonella Typhi and DENV/Mycobacterium leprae co-infection were identified. Entomological surveys implicated water storage containers and discarded tires as the most important development sites for Aedes aegypti and Ae. albopictus, respectively. Although this is the first documented dengue outbreak in RMI, the age groups of cases and high prevalence of secondary infection demonstrate prior DENV circulation. Dengue surveillance should continue to be strengthened in RMI and throughout the Pacific to identify and rapidly respond to future outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号