首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: The relationship among body fat distribution, blood pressure, serum leptin levels, and insulin resistance was investigated in hypertensive obese women with central distribution of fat. Research Methods and Procedures: We studied 74 hypertensive women (age, 49.8 ± 7.5 years; body mass index, 39.1 ± 5.5 kg/m2; waist-to-hip ratio, 0.96 ± 0.08). All patients were submitted to 24-hour blood pressure ambulatory monitoring (24h-ABPM). Abdominal ultrasonography was used to estimate the amount of visceral fat (VF). Fasting blood samples were obtained for serum leptin and insulin determinations. Insulin resistance was estimated by homeostasis model assessment insulin resistance index (HOMA-r index). Results: Sixty-four percent of the women were postmenopausal, and all patients showed central distribution of fat (waist-to-hip ratio > 0.85). The VF correlated with systolic 24h-ABPM values (r = 0.28, p = 0.01) and with HOMA-r index (r = 0.27; p = 0.01). VF measurement (7.5 ± 2.3 vs. 5.9 ± 2.2 cm, p < 0.001) and the systolic 24h-ABPM (133 ± 14.5 vs. 126 ± 9.8 mm Hg, p = 0.04), but not HOMA-r index, were significantly higher in the postmenopausal group (n = 48) than in the premenopausal group (n = 26). No correlations were observed between blood pressure levels and HOMA-r index, leptin, or insulin levels. In the multiple regression analysis, visceral fat, but not age, body fat mass, or HOMA-r index, correlated with the 24h-ABPM (p = 0.003). Discussion: In centrally obese hypertensive women, the accumulation of VF, more often after menopause, is associated with higher levels of blood pressure and insulin resistance. The mechanism through which VF contributes to higher blood pressure levels seems to be independent of leptin or insulin levels.  相似文献   

2.
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS‐69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS‐69 genotype were measured in 115 normal‐weight (BMI <25 kg/m2) and 138 obese (BMI ≥30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI ≥35kg/m2) compared with the normal‐weight group (P = 0.029). Obese subjects with the insertion allele had greater fat mass (42.3 ± 0.9 vs. 38.9 ± 0.9 kg, P = 0.034) and fat‐free soft tissue mass (47.4 ± 0.6 vs. 45.1 ± 0.6 kg, P = 0.014), and more abdominal subcutaneous adipose tissue (SAT, 595 ± 17 vs. 531 ± 17 cm2, P = 0.025) but not visceral fat (P = 0.739), than obese homozygotes for the wild‐type allele. Only SAT was greater in normal‐weight subjects with the insertion allele (P = 0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild‐type allele in the normal‐weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat‐free soft tissue mass and fat mass, particularly SAT, in obese black South African women.  相似文献   

3.
Objective: The objective was to determine if physiological hyperglycemia induces a proatherogenic inflammatory response in mononuclear cells (MNCs) in obese reproductive‐age women. Research Methods and Procedures: Seven obese and 6 age‐matched lean women (20 to 39 years of age) underwent a 2‐hour 75‐g oral glucose tolerance test. The release of interleukin‐6 (IL‐6) and interleukin‐1β (IL‐1β) from MNCs cultured in the presence of lipopolysaccharide (LPS) was measured after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Reactive oxygen species (ROS) generation and intra‐nuclear nuclear factor κB (NFκB) from MNCs were quantified from the same blood samples. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA‐IR). Total body fat and truncal fat were determined by DXA. Results: Obese women had a higher (p < 0.03) total body fat (42.2 ± 1.1 vs. 27.7 ± 2.0%), truncal fat (42.1 ± 1.2 vs. 22.3 ± 2.4%), and HOMA‐IR (3.3 ± 0.5 vs. 1.8 ± 0.2). LPS‐stimulated IL‐6 release from MNCs was suppressed during hyperglycemia in lean subjects (1884 ± 495 vs. 638 ± 435 pg/mL, p < 0.05) but not in obese women (1184 ± 387 vs. 1403 ± 498 pg/mL). There was a difference (p < 0.05) between groups in the hyperglycemia‐induced MNC‐mediated release of IL‐6 (?1196 ± 475 vs. 219 ± 175 pg/mL) and IL‐1β (?79 ± 43 vs. 17 ± 12 pg/mL). In addition, the obese group exhibited increased (p < 0.05) MNC‐derived ROS generation (39.3 ± 9.9 vs. ?1.0 ± 12.8%) and intra‐nuclear NFκB (9.4 ± 7.3 vs. ?23.5 ± 13.5%). Truncal fat was positively correlated with the MNC‐derived IL‐6 response (ρ = 0.58, p < 0.05) and intra‐nuclear NFκB (ρ = 0.64, p < 0.05). Discussion: These data suggest that obese reproductive‐age women are unable to suppress proatherogenic inflammation during physiological hyperglycemia. Increased adiposity may be a significant contributor to this pro‐inflammatory susceptibility.  相似文献   

4.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

5.
Objective: The goal of this study was to quantify differences in lipid metabolism and insulin sensitivity in black and white subjects to explain ethnic clinicopathological differences in type 2 diabetes. Research Methods and Procedures: The in vitro lipolytic activity of adipocytes isolated from obese black and white women was measured in the presence of insulin and isoproterenol. Insulin resistance was assessed in vivo using the euglycemic hyperinsulinemic clamp technique. Results: Fasting plasma levels of insulin and nonesterified fatty acid (NEFA) in black and white women were 67 ± 5 pM vs. 152 ± 20 pM (p < 0.01) and 863 ± 93 μM vs. 412 ± 34 μM (p < 0.01), respectively. Euglycemic hyperinsulinemic clamp studies showed that obese black subjects were more insulin‐resistant than their white counterparts (glucose infusion rates: 1.3 ± 0.2 vs. 2.2 ± 0.3 mg/kg per min; p < 0.05). Isolated adipocytes from white women were more responsive to insulin than those from black women with 0.7 nM insulin causing a 55 ± 4% inhibition of isoproterenol‐stimulated lipolysis compared with 27 ± 10% in black women (p < 0.05). Discussion: The low responsiveness of adipocyte lipolytic activity to insulin in black women in the presence of a relative insulinopenia may account for the high plasma NEFA levels seen in these women, which may, in turn, account for their higher in vivo insulin resistance. High NEFA levels may also contribute to the low insulin secretory activity observed in the obese black females. These data suggest that the pathogenesis of insulin resistance and type 2 diabetes within the black obese community is strongly influenced by their adipocyte metabolism.  相似文献   

6.
The rise in obesity‐related morbidity in children and adolescents requires urgent prevention and treatment strategies. Currently, only limited data are available on the effects of exercise programs on insulin resistance, and visceral, hepatic, and intramyocellular fat accumulation. We hypothesized that a 12‐week controlled aerobic exercise program without weight loss reduces visceral, hepatic, and intramyocellular fat content and decreases insulin resistance in sedentary Hispanic adolescents. Twenty‐nine postpubertal (Tanner stage IV and V), Hispanic adolescents, 15 obese (7 boys, 8 girls; 15.6 ± 0.4 years; 33.7 ± 1.1 kg/m2; 38.3 ± 1.5% body fat) and 14 lean (10 boys, 4 girls; 15.1 ± 0.3 years; 20.6 ± 0.8 kg/m2; 18.9 ± 1.5% body fat), completed a 12‐week aerobic exercise program (4 × 30 min/week at ≥70% of peak oxygen consumption (VO2peak)). Measurements of cardiovascular fitness, visceral, hepatic, and intramyocellular fat content (magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS)), and insulin resistance were obtained at baseline and postexercise. In both groups, fitness increased (obese: 13 ± 2%, lean: 16 ± 4%; both P < 0.01). In obese participants, intramyocellular fat remained unchanged, whereas hepatic fat content decreased from 8.9 ± 3.2 to 5.6 ± 1.8%; P < 0.05 and visceral fat content from 54.7 ± 6.0 to 49.6 ± 5.5 cm2; P < 0.05. Insulin resistance decreased indicated by decreased fasting insulin (21.8 ± 2.7 to 18.2 ± 2.4 µU/ml; P < 0.01) and homeostasis model assessment of insulin resistance (HOMAIR) (4.9 ± 0.7 to 4.1 ± 0.6; P < 0.01). The decrease in visceral fat correlated with the decrease in fasting insulin (R2 = 0.40; P < 0.05). No significant changes were observed in any parameter in lean participants except a small increase in lean body mass (LBM). Thus, a controlled aerobic exercise program, without weight loss, reduced hepatic and visceral fat accumulation, and decreased insulin resistance in obese adolescents.  相似文献   

7.
8.
Objective: To investigate the effects of rosiglitazone (RSG) on insulin sensitivity and regional adiposity (including intrahepatic fat) in patients with type 2 diabetes. Research Methods and Procedures: We examined the effect of RSG (8 mg/day, 2 divided doses) compared with placebo on insulin sensitivity and body composition in 33 type 2 diabetic patients. Measurements of insulin sensitivity (euglycemic hyperinsulinemic clamp), body fat (abdominal magnetic resonance imaging and DXA), and liver fat (magnetic resonance spectroscopy) were taken at baseline and repeated after 16 weeks of treatment. Results: There was a significant improvement in glycemic control (glycosylated hemoglobin −0.7 ± 0.7%, p ≤ 0.05) and an 86% increase in insulin sensitivity in the RSG group (glucose-disposal rate change from baseline: 17.5 ± 14.5 μmol glucose/min/kg free fat mass, p < 0.05), but no significant change in the placebo group compared with baseline. Total body weight and fat mass increased (p ≤ 0.05) with RSG (2.1 ± 2.0 kg and 1.4 ± 1.6 kg, respectively) with 95% of the increase in adiposity occurring in nonabdominal regions. In the abdominal region, RSG increased subcutaneous fat area by 8% (25.0 ± 28.7 cm2, p = 0.02), did not alter intra-abdominal fat area, and reduced intrahepatic fat levels by 45% (−6.7 ± 9.7%, concentration relative to water). Discussion: Our data indicate that RSG greatly improves insulin sensitivity in patients with type 2 diabetes and is associated with an increase in adiposity in subcutaneous but not visceral body regions.  相似文献   

9.
Black South African women are more insulin resistant than BMI‐matched white women. The objective of the study was to characterize the determinants of insulin sensitivity in black and white South African women matched for BMI. A total of 57 normal‐weight (BMI 18–25 kg/m2) and obese (BMI > 30 kg/m2) black and white premenopausal South African women underwent the following measurements: body composition (dual‐energy X‐ray absorptiometry), body fat distribution (computerized tomography (CT)), insulin sensitivity (SI, frequently sampled intravenous glucose tolerance test), dietary intake (food frequency questionnaire), physical activity (Global Physical Activity Questionnaire), and socioeconomic status (SES, demographic questionnaire). Black women were less insulin sensitive (4.4 ± 0.8 vs. 9.5 ± 0.8 and 3.0 ± 0.8 vs. 6.0 ± 0.8 × 10?5/min/(pmol/l), for normal‐weight and obese women, respectively, P < 0.001), but had less visceral adipose tissue (VAT) (P = 0.051), more abdominal superficial subcutaneous adipose tissue (SAT) (P = 0.003), lower SES (P < 0.001), and higher dietary fat intake (P = 0.001) than white women matched for BMI. SI correlated with deep and superficial SAT in both black (R = ?0.594, P = 0.002 and R = 0.495, P = 0.012) and white women (R = ?0.554, P = 0.005 and R = ?0.546, P = 0.004), but with VAT in white women only (R = ?0.534, P = 0.005). In conclusion, body fat distribution is differentially associated with insulin sensitivity in black and white women. Therefore, the different abdominal fat depots may have varying metabolic consequences in women of different ethnic origins.  相似文献   

10.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

11.
The postprandial state seems to have a direct influence on oxidative status and insulin resistance. We determined the effect of an increase in plasma triglycerides after a high‐fat meal on oxidative stress in severely obese patients with differing degrees of insulin resistance. The study was undertaken in 60 severely obese persons who received a 60‐g fat overload with a commercial preparation. Measurements were made of insulin resistance, the plasma activity of various antioxidant enzymes, the total antioxidant capacity (TAC) and the plasma concentration of thiobarbituric acid reactive substances (TBARS). The patients with greater insulin resistance had a lower plasma superoxide dismutase (SOD) activity (P < 0.05) and a greater glutathione peroxidase (GSH‐Px) activity (P < 0.05). The high‐fat meal caused a significant reduction in SOD activity and an increase in the plasma concentration of TBARS in all the patients. Only the patients with lower insulin resistance experienced a significant increase in plasma catalase activity (2.22 ± 1.02 vs. 2.93 ± 1.22 nmol/min/ml, P < 0.01), remaining stable in the patients with greater insulin resistance. These latter patients had a reduction in plasma TAC (6.92 ± 1.93 vs. 6.29 ± 1.80 mmol/l, P < 0.01). In conclusion, our results show a close association between the degree of insulin resistance and markers of oxidative stress, both before and after a high‐fat meal. The postprandial state causes an important increase in oxidative stress, especially in severely obese persons with greater insulin resistance. However, we are unable to determine from this study whether there is first an increase in oxidative stress or in insulin resistance.  相似文献   

12.
Objective: It has been hypothesized that excessive fatty acid availability contributes to steatosis and the metabolic abnormalities associated with nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to evaluate whether adipose tissue lipolytic activity and the rate of fatty acid release into plasma are increased in obese adolescents with NAFLD. Methods: Palmitate kinetics were determined in obese adolescents with normal (n = 9; BMI = 37 ± 2 kg/m2; intrahepatic triglyceride (IHTG) ≤5.5% of liver volume) and increased (n = 9; BMI = 36 ± 2 kg/m2; IHTG ≥ 10% of liver volume) IHTG content during the basal state (postabsorptive condition) and during physiological hyperinsulinemia (postprandial condition). Both groups were matched on body weight, BMI, percent body fat, age, sex, and Tanner stage. The hyperinsulinemic‐euglycemic clamp procedure, in conjunction with a deuterated palmitate tracer infusion, was used to determine free‐fatty acid (FFA) kinetics, and magnetic resonance spectroscopy was used to determine IHTG content. Results: The rate of whole‐body palmitate release into plasma was greater in subjects with NAFLD than those with normal IHTG content during basal conditions, (87 ± 7 vs. 127 ± 13 µmol/min; P < 0.01) and during physiological hyperinsulinemia, (24 ± 2 vs. 44 ± 8 µmol/min; P < 0.01). Discussion: These results demonstrate that adipose tissue lipolytic activity is increased in obese adolescents with NAFLD and results in an increase in the rate of fatty acid release into plasma throughout the day. This continual excess in fatty acid flux supports the hypothesis that adipose insulin resistance is involved in the pathogenesis of steatosis and contributes to the metabolic complications associated with NAFLD.  相似文献   

13.
Age‐related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ‐agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65–79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m2) and women (n = 40, BMI = 33.3 ± 4.9 kg/m2) during weight loss. All participants underwent a 16‐week hypocaloric weight‐loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow‐up using computed tomography (CT). Lean mass was measured using dual X‐ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (?1,160 vs. ?647 cm3, P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (?104 vs. ?298 cm3, P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: ?43 vs. ?88 cm3, P = 0.005; women: ?34 vs. ?59 cm3, P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.  相似文献   

14.
Objective: Lower lipid and insulin levels are found during a glucose-tolerance test in obese black than obese white South African women. Therefore, β-cell function and lipid metabolism were compared in these populations during a mixed meal. Research Methods and Procedures: Blood concentrations of glucose, free fatty acids (FFAs), insulin, lipograms, and in vivo FFA oxidation were determined at fasting and for 7 hours after oral administration of a mixed emulsion containing glucose-casein-sucrose-lipid and [1-13C] palmitic acid in 8 lean black women (LBW), 10 obese black women (OBW), 9 lean white women (LWW), and 10 obese white women (OWW). Subcutaneous and visceral fat mass was assessed by computerized tomography. Results: Visceral fat area was higher in OWW (152.7 ± 17.0 cm2) than OBW (80.0 ± 6.7 cm2; p < 0.01). In OBW, 30-minute insulin levels were higher (604.3 ± 117.6 pM) than OWW (311.0 ± 42.9 pM; p < 0.05). Total triglyceride was higher in OWW (706.7 ± 96.0 mM × 7 hours) than OBW (465.7 ± 48.2 mM × 7 hours; p < 0.05) and correlated with visceral fat area (β = 0.38, p = 0.05). Palmitate oxidation was higher in lean than obese women in both ethnic groups and correlated negatively with fat mass (β = −0.58, p < 0.005). Discussion: The higher 30-minute insulin response in OBW may reflect a higher insulinotropic effect of FFAs or glucose. The elevated triglyceride level of OWW may be due to their higher visceral fat mass and possibly reduced clearance by adipose tissue.  相似文献   

15.
Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5’ untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915–46,958,001 in SLC19A1 of ?34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.  相似文献   

16.
17.
Rodent and in vitro studies suggest that thiazolidinediones promote adipogenesis but there are few studies in humans to corroborate these findings. The purpose of this study was to determine whether pioglitazone stimulates adipogenesis in vivo and whether this process relates to improved insulin sensitivity. To test this hypothesis, 12 overweight/obese nondiabetic, insulin‐resistant individuals underwent biopsy of abdominal subcutaneous adipose tissue at baseline and after 12 weeks of pioglitazone treatment. Cell size distribution was determined via the Multisizer technique. Insulin sensitivity was quantified at baseline and postpioglitazone by the modified insulin suppression test. Regional fat depots were quantified by computed tomography (CT). Insulin resistance (steady‐state plasma insulin and glucose (SSPG)) decreased following pioglitazone (P < 0.001). There was an increase in the ratio of small‐to‐large cells (1.16 ± 0.44 vs. 1.52 ± 0.66, P = 0.03), as well as a 25% increase in the absolute number of small cells (P = 0.03). The distribution of large cell diameters widened (P = 0.009), but diameter did not increase in the case of small cells. The increase in proportion of small cells was associated with the degree to which insulin resistance improved (r = ?0.72, P = 0.012). Visceral abdominal fat decreased (P = 0.04), and subcutaneous abdominal (P = 0.03) and femoral fat (P = 0.004) increased significantly. Changes in fat volume were not associated with SSPG change. These findings demonstrate a clear effect of pioglitazone on human subcutaneous adipose cells, suggestive of adipogenesis in abdominal subcutaneous adipose tissue, as well as redistribution of fat from visceral to subcutaneous depots, highlighting a potential mechanism of action for thiazolidinediones. These findings support the hypothesis that defects in subcutaneous fat storage may underlie obesity‐associated insulin resistance.  相似文献   

18.
Objective: To determine whether racial differences exist in the relationship of the abnormalities defining the metabolic syndrome (MS) to regional adiposity and fat cell size (FCS) in obese postmenopausal women. Research Methods and Procedures: We determined the relationship of metabolic variables associated with the MS to regional body composition and abdominal (ABD) and gluteal (GLT) FCS in 25 white (CAU) and 25 African‐American (AF‐AMER) older women matched for age (58 ± 5 years; mean ± SD) and BMI (35 ± 4 kg/m2). Results: MS was present in 36% of the AF‐AMER and 57% of the CAU women. There were no differences in total body, trunk, gluteofemoral fat mass or regional FCS, but AF‐AMER women had 22% lower visceral fat, 24% higher insulin, and 31% lower triglyceride levels than CAU women (p < 0.05). Multiple regression analysis with body fat, visceral ABD fat area, and FCS as independent variables showed that GLT FCS was independently correlated with 2‐hour insulin (r = 0.56), triglyceride (r = 0.62), and high‐density lipoprotein cholesterol (r = ?0.72) levels in AF‐AMER women but not in CAU women, where only systolic blood pressure correlated with subcutaneous ABD fat area (r = 0.57) (p < 0.05). Discussion: The associations between GLT FCS and metabolic dysfunction in obese AF‐AMER but not CAU women suggest that central obesity is a less valid predictor of the MS in obese postmenopausal AF‐AMER women than in CAU women and that GLT FCS may be a more sensitive indicator of risk for the MS in AF‐AMER women.  相似文献   

19.
Objective: Resistin is associated with insulin resistance in mice and may play a similar role in humans. The aim of our study was to examine the relationship of serum resistin level to body composition, insulin resistance, and related obesity phenotypes in humans. Research Methods and Procedures: Sixty‐four young (age 32 ± 10 years), obese (BMI 32.9 ± 5.6), nondiabetic subjects taking no medication, and 15 lean (BMI 21.1 ± 1.3) volunteers were studied cross‐sectionally. Thirty‐five of the subjects were also reevaluated after 1.5 years on a weight reduction program entailing dieting and exercise; changes of serum resistin were compared with changes of BMI, body composition, fat distribution, and several indices of insulin sensitivity derived from plasma glucose and serum insulin levels measured during 75‐g oral glucose tolerance test. Results: In a cross‐sectional analysis, serum resistin was significantly higher in obese subjects than in lean volunteers (24.58 ± 12.93 ng/mL; n = 64 vs. 12.83 ± 8.30 ng/mL; n = 15; p < 0.01), and there was a correlation between resistin level and BMI, when the two groups were combined (ρ = 0.35, p < 0.01). Although cross‐sectional analysis in obese subjects revealed no correlation between serum resistin and parameters related to adiposity or insulin resistance, longitudinal analysis revealed change in serum resistin to be positively correlated with changes in BMI, body fat, fat mass, visceral fat area, and mean glucose and insulin (ρ = 0.39, 0.40, 0.44, 0.50, 0.40, and 0.50; p = 0.02, 0.03, 0.02, <0.01, 0.02, and <0.01, respectively). Discussion: Resistin appears to be related to human adiposity and to be a possible candidate factor in human insulin resistance.  相似文献   

20.
Objectives : To determine the effects of equivalent diet‐ or exercise‐induced weight loss and exercise without weight loss on subcutaneous fat, visceral fat, and insulin sensitivity in obese women. Research Methods and Procedures : Fifty‐four premenopausal women with abdominal obesity [waist circumference 110.1 ± 5.8 cm (mean ± SD)] (BMI 31.3 ± 2.0 kg/m2) were randomly assigned to one of four groups: diet weight loss (n = 15), exercise weight loss (n = 17), exercise without weight loss (n = 12), and a weight‐stable control group (n = 10). All groups underwent a 14‐week intervention. Results : Body weight decreased by ~6.5% within both weight loss groups and was unchanged in the exercise without weight loss and control groups. In comparison with controls, cardiorespiratory fitness improved within the exercise groups only (p < 0.01). Reduction in total, abdominal, and abdominal subcutaneous fat within the exercise weight loss group was greater (p < 0.001) than within all other groups. The reduction in total and abdominal fat within the diet weight loss and exercise without weight loss groups was greater than within controls (p < 0.001) but not different from each other (p > 0.05). Visceral fat decreased within all treatment groups (p < 0.008), and these changes were not different from each other. In comparison with the control group, insulin sensitivity improved within the exercise weight loss group alone (p < 0.001). Discussion : Daily exercise without caloric restriction was associated with substantial reductions in total fat, abdominal fat, visceral fat, and insulin resistance in women. Exercise without weight loss was also associated with a substantial reduction in total and abdominal obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号