首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nhhBAG gene of Rhodococcus rhodochrous M33 that encodes nitrile hydratase (NHase), converting acrylonitrile into acrylamide, was cloned and expressed in Corynebacterium glutamicum under the control of an ilvC promoter. The specific enzyme activity in recombinant C. glutamicum cells was about 13.6 μmol/min/mg dry cell weight (DCW). To overexpress the NHase, five types of plasmid variants were constructed by introducing mutations into 80 nucleotides near the translational initiation region (TIR) of nhhB. Of them, pNBM4 with seven mutations showed the highest NHase activity, exhibiting higher expression levels of NhhB and NhhA than wild-type pNBW33, mainly owing to decreased secondary-structure stability and an introduction of a conserved Shine-Dalgarno sequence in the translational initiation region. In a fed-batch culture of recombinant Corynebacterium cells harboring pNBM4, the cell density reached 53.4 g DCW/L within 18 h, and the specific and total enzyme activities were estimated to be 37.3 μmol/min/mg DCW and 1,992 μmol/min/mL, respectively. The use of recombinant Corynebacterium cells for the production of acrylamide from acrylonitrile resulted in a conversion yield of 93 % and a final acrylamide concentration of 42.5 % within 6 h when the total amount of fed acrylonitrile was 456 g.  相似文献   

2.
3.
Marron AO  Akam M  Walker G 《PloS one》2012,7(4):e32867

Background

Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have arisen by lateral gene transfer from a prokaryote, and is a fusion of beta and alpha nitrile hydratase subunits. Only the alpha subunit has been reported in A. anophagefferens.

Methodology/Principal Findings

Here we report the detection of nitrile hydratase genes in five eukaryotic supergroups: opisthokonts, amoebozoa, archaeplastids, CCTH and SAR. Beta-alpha subunit fusion genes are found in the choanoflagellates, ichthyosporeans, apusozoans, haptophytes, rhizarians and stramenopiles, and potentially also in the amoebozoans. An individual alpha subunit is found in a dinoflagellate and an individual beta subunit is found in a haptophyte. Phylogenetic analyses recover a clade of eukaryotic-type nitrile hydratases in the Opisthokonta, Amoebozoa, SAR and CCTH; this is supported by analyses of introns and gene architecture. Two nitrile hydratase sequences from an animal and a plant resolve in the prokaryotic nitrile hydratase clade.

Conclusions/Significance

The evidence presented here demonstrates that nitrile hydratase genes are present in multiple eukaryotic supergroups, suggesting that a subunit fusion gene was present in the last common ancestor of all eukaryotes. The absence of nitrile hydratase from several sequenced species indicates that subunits were lost in multiple eukaryotic taxa. The presence of nitrile hydratases in many other eukaryotic groups is unresolved due to insufficient data and taxon sampling. The retention and expression of the gene in distantly related eukaryotic species suggests that it plays an important metabolic role. The novel family of eukaryotic nitrile hydratases presented in this paper represents a promising candidate for research into their molecular biology and possible biotechnological applications.  相似文献   

4.
Nitrile metabolising actinomycetes previously recovered from deep-sea sediments and terrestrial soils were investigated for their nitrile transforming properties. Metabolic profiling and activity assays confirmed that all strains catalysed the hydrolysis of nitriles by a nitrile hydratase/amidase system. Acetonitrile and benzonitrile, when used as growth substrates for enzyme induction experiments, had a significant influence on the biotransformation activities towards various nitriles and amides. The specific activities of selected deep-sea and terrestrial acetonitrile-grown bacteria against a suite of nitriles and amides were higher than those of the only other reported marine nitrile-hydrolysing R. erythropolis, isolated from a shallow sediment. The increase of nitrile chain length appeared to have negative influence on the nitrile hydratase activity of acetonitrile-grown bacteria, but the same was not true for benzonitrile-grown bacteria. The nitrile hydratases and amidases were constitutive in 10 of the 16 deep-sea and terrestrial actinomycetes studied, and one strain showed an inducible hydratase and a constitutive amidase. Most of the deep-sea strains had constitutive activities and showed some of the highest activities and broadest substrate specificities of organisms included in this study. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.  相似文献   

6.
The catalytic properties of a nitrile hydratase, isolated from a strain of Rhodococcus ruber gt1 and immobilized by covalent cross-linking with chitosan activated with 0.1% benzoquinone solution, have been investigated. The kinetic parameters of acrylonitrile hydration catalyzed by immobilized nitrile hydratase and the enzyme in a solution have been determined. It is found that the immobilization does not lead to a decrease in the maximum reaction rate (V max), whereas the Michaelis constant (K M) is reduced by a factor of 2.4. The possibility of reusing an immobilized enzyme for 50 consecutive cycles of acrylonitrile transformation was shown, and the nitrile hydratase activity in the 50th cycle exceeded that in the first cycle by 3.5 times. It is shown that the effect of temperature on activity depended on the concentration of the enzyme, which confirms the dissociative nature of nitrile hydratase inactivation. It was found that immobilized nitrile hydratases remain active at pH 3.0–4.0, whereas the enzyme is inactivated in a solution under these conditions. The resulting biocatalyst can be effectively used to receive acrylamide from acrylonitrile.  相似文献   

7.
Effects of some nitriles and amides, as well as glucose and ammonium, on the growth and the nitrile hydratase (EC 4.2.1.84) activity of the Rhodococcus sp. strain gt1 isolated from soil were studied. The activity of nitrile hydratase mainly depended on the carbon and nitrogen supply to cells. The activity of nitrile hydratase was high in the presence of glucose and ammonium at medium concentrations and decreased at concentrations of glucose of more than 0.3%. Saturated unsubstituted aliphatic nitriles and amides were found to be a good source of nitrogen and carbon. However, the presence of nitriles and amides in the medium was not absolutely necessary for the expression of the activity of nitrile hydratase of the Rhodococcus sp. strain gt1.  相似文献   

8.
《Process Biochemistry》2010,45(6):866-873
Strain Amycolatopsis sp. IITR215 was isolated from a sewage sample using polyacrylonitrile powder as the sole nitrogen source. Identification was performed by 16S rDNA analysis. The isolated strain harbored multiple nitrile-metabolizing enzymes having a wide range of substrate specificities. It metabolized nitrile and amide compounds with constitutive enzymes. Studies using an amidase inhibitor showed that hydrolysis of acrylonitrile and acrylamide occurred due to nitrile hydratase and amidase, respectively, while hydrolysis of hexanenitrile was due to the action of either nitrilase or a second nitrile hydratase/amidase system. The inhibitory effects of N-bromosuccinimide and N-ethylmaleimide on enzymes of this culture were also studied and this further indicated the involvement of either a nitrilase or a second nitrile hydratase/amidase system for hydrolysis of hexanenitrile. Interestingly, hexanenitrile hydrolysis exhibited an optimum temperature of 55 °C, whereas acrylonitrile and acrylamide hydrolysis showed an optimum temperature of 45 °C. The optimum pH was 5.8 for hexanenitrile hydrolysis and 7.0 for acrylonitrile and acrylamide hydrolysis. Hexanenitrile hydrolysis by enzymes of this strain showed better organic solvent tolerance in the presence of alcohols. The maximum enzyme activity of nitrile-metabolizing enzymes was found using media containing isobutyramide as the nitrogen source. This is the first report on constitutive multiple enzymes from the Amycolatopsis genus.  相似文献   

9.
The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt1 possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5–4 times lower compared to 4-cyanopyridine and 1.6–2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on kaolin was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carboxylic acids.  相似文献   

10.
The nitrile metabolising strains AJ270, AJ300 and AJ115 were isolated from the same location. The strains have very similar nitrile metabolising profiles. Sequencing of the 16S rRNA gene indicates that strains AJ270 and AJ300 are novel strains of Rhodococcus erythropolis while strain AJ115 is a novel Microbacterium strain very closely related to Microbacterium oxydans and Microbacterium liquefaciens. Analysis of the structure of the nitrile hydratase/amidase gene clusters in the three strains indicates that this region is identical in these strains and that this structure is different to other nitrile hydratase/amidase gene clusters. The major difference seen is the insertion of a complete copy of the insertion sequence IS1166 in the nhr2 gene. This copy of IS1166 generates a 10 bp direct duplication at the point of insertion and has one ORF encoding a protein of 434 amino acids, with 98% homology to the transposase of IS666 from Mycobacterium avium. A gene oxd, encoding aldoxime dehydratase is found upstream of the nitrile hydratase gene cluster and an open reading frame encoding a protein with homology to GlnQ type ABC transporters is found downstream of the nitrile hydratase/amidase genes. The identity of the nitrile hydratase/amidase gene clusters in the three strains suggests horizontal gene transfer of this region. Analysis of the strains for both linear and circular plasmids indicates that both are present in the strains but hybridisation studies indicate that the nitrile hydratase/amidase gene cluster is chromosomally located. The nitrile hydratase/amidase enzymes of strain AJ270 are inducible with acetonitrile or acetamide. Interestingly although a number of Fe-type nitrile hydratases have been shown to be photosensitive, the enzyme from strain AJ270 is not.  相似文献   

11.
Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, was immobilized by adsorption on carbon supports differing in structure and porosity. The adsorption capacity of the supports towards cells, the substrate of the nitrile hydratase reaction (acrylonitrile), and the product (acrylamide) was studied. Also, the effect of immobilization on nitrile hydratase activity of bacteria was investigated, and the operational stability of the immobilized biocatalyst was determined. It was shown that crushed and granulated active coals were more appropriate for immobilization than fibrous carbon adsorbents.  相似文献   

12.
The nitrile hydratase (NHase) gene of Rhodococcus rhodochrous PA-34 mutant 4D has been amplified by PCR, cloned and expressed in Pichia pastoris KM-71 using pHIL-D2 expression vector. The recombinant P. pastoris KM-71 exhibited active expression of the nitrile hydratase gene of the mutant 4D and has shown very good potential for the transformation of 3-cyanopyridine to nicotinamide. The recombinant P. pastoris KM-71 exhibited maximum NHase activity when cultivated in YPD medium was supplemented with 0.4?mM cobalt ions. The recombinant P. pastoris KM-71 showed maximum nitrile hydratase enzyme production, when incubated at 30?°C for 15?h.  相似文献   

13.
Degradation of Acetonitrile by Pseudomonas putida   总被引:3,自引:2,他引:1       下载免费PDF全文
A bacterium capable of utilizing high concentrations of acetonitrile as the sole source of carbon and nitrogen was isolated from soil and identified as Pseudomonas putida. This bacterium could also utilize butyronitrile, glutaronitrile, isobutyronitrile, methacrylonitrile, propionitrile, succinonitrile, valeronitrile, and some of their corresponding amides, such as acetamide, butyramide, isobutyramide, methacrylamide, propionamide, and succinamide as growth substrates. Acetonitrile-grown cells oxidized acetonitrile with a Km of 40.61 mM. Mass balance studies with [14C]acetonitrile indicated that nearly 66% of carbon of acetonitrile was released as 14CO2 and 14% was associated with the biomass. Metabolites of acetonitrile in the culture medium were acetic acid and ammonia. The acetate formed in the early stages of growth completely disappeared in the later stages. Cell extracts of acetonitrile-grown cells contained activities corresponding to nitrile hydratase and amidase, which mediate the breakdown of actonitrile into acetic acid and ammonia. Both enzymes were intracellular and inducible and hydrolyzed a wide range of substrates. The specific activity of amidase was at least 150-fold higher than the activity of the enzyme nitrile hydratase.  相似文献   

14.
The ability to modulate gene expression is an important genetic tool in systems biology and biotechnology. Here, we demonstrate that a previously published easy and fast PCR-based method for modulating gene expression in lactic acid bacteria is also applicable to Corynebacterium glutamicum. We constructed constitutive promoter libraries based on various combinations of a previously reported C. glutamicum -10 consensus sequence (gngnTA(c/t)aaTgg) and the Escherichia coli -35 consensus, either with or without an AT-rich region upstream. A promoter library based on consensus sequences frequently found in low-GC Gram-positive microorganisms was also included. The strongest promoters were found in the library with a -35 region and a C. glutamicum -10 consensus, and this library also represents the largest activity span. Using the alternative -10 consensus TATAAT, which can be found in many other prokaryotes, resulted in a weaker but still useful promoter library. The upstream AT-rich region did not appear to affect promoter strength in C. glutamicum. In addition to the constitutive promoters, a synthetic inducible promoter library, based on the E. coli lac-promoter, was constructed by randomizing the 17-bp spacer between -35 and -10 consensus sequences and the sequences surrounding these. The inducible promoter library was shown to result in β-galactosidase activities ranging from 284 to 1,665 Miller units when induced by IPTG, and the induction fold ranged from 7–59. We find that the synthetic promoter library (SPL) technology is convenient for modulating gene expression in C. glutamicum and should have many future applications, within basic research as well as for optimizing industrial production organisms.  相似文献   

15.
Rhodococcus rhodochrous NCIMB 11216 produced nitrile hydratase (320 nkat mg of protein−1) and amidase activity (38.4 nkat mg of protein−1) when grown on a medium containing propionitrile. These enzymes were able to hydrolyze nitrile groups of both granular polyacrylonitriles (PAN) and acrylic fibers. Nitrile groups of PAN40 (molecular mass, 40 kDa) and PAN190 (molecular mass, 190 kDa) were converted into the corresponding carbonic acids to 1.8 and 1.0%, respectively. In contrast, surfacial nitrile groups of acrylic fibers were only converted to the corresponding amides. X-ray photoelectron spectroscopy analysis showed that 16% of the surfacial nitrile groups were hydrolyzed by the R. rhodochrous enzymes. Due to the enzymatic modification, the acrylic fibers became more hydrophilic and thus, adsorption of dyes was enhanced. This was indicated by a 15% increase in the staining level (K/S value) for C.I. Basic Blue 9.  相似文献   

16.
Cells of the Pseudomonas fluorescens strain C2 containing nitrilase and Rhodococcus ruber strain gt1 with nitrile hydratase activity have been immobilized by the use of adsorption on fibrous carbon materials. It has been shown that the maximum adsorption value of Rhodococcus cells is higher than that in pseudomonades, reaching 21 mg of dry cells/1 g of the carrier vs. 6 mg, respectively. Cell adsorption, compared to cell suspension, gives a significant rise in nitrilase activity (by 7.4 times, using Ural TM-4 as the carrier) and in the stability of nitrile hydratase activity (5 reaction cycles without loss of activity, using Carbopon-B-active). Immobilized biocatalysts were also obtained by cell growth from Ps. fluorescens strain C2 and Rhodococcus ruber strain gt1 on fibrous carbon adsorbents. Biocatalyst productivity was higher for both strains when the carbonized material Ural TM-4 was used as the carrier.  相似文献   

17.
18.
The expression of a new acylamidase gene from R. erythropolis TA37 was studied in Rhodococcus erythropolis strains. This acylamidase, as a result of its unique substrate specificity, can hydrolyse N-substituted amides (4′-nitroacetanilide, N-isopropylacrylamide, N′N-dimethylaminopropylacrylamide). A new expression system based on the use of the promoter region of nitrile hydratase genes from R. rhodochrous M8 was created to achieve constitutive synthesis of acylamidase in R. erythropolis cells. A fourfold improvement in the acylamidase activity of recombinant R. erythropolis cells as compared with the parent wild-type strain was obtained through the use of the new expression system.  相似文献   

19.
Summary We sought the optimum conditions for production of nitrile hydratase by Rhodococcus rhodochrous J1. The addiiion of both cobalt ions and an aliphatic nitrile or amide as an inducer was indispensable for the appearance of nitrile hydratase activity in R. rhodochrous J1 cells. Crotonamide was an efficient inducer and, moreover, urea was found to be the most powerful inducer for the production of nitrile hydratase. When R. rhodochrous J1 was cultivated under optimal conditions, the enzyme activity in the culture broth and the specific activity was approximately 32,000 and 512 times higher than the initially obtained levels, respectively. The nitrile hydratase formed corresponded to more than 45% of the total soluble protein in urea-induced cells, as judged by quantitative evaluation of the gel track.Offprint requests to: T. Nagasawa  相似文献   

20.
The nitrile hydratase isolated from Rhodococcus ruber strain gt1, displaying a high nitrile hydratase activity, was immobilized on unmodified aluminum oxides and carbon-containing adsorbents, including the carbon support Sibunit. The activity and operational stability of the immobilized nitrile hydratase were studied in the reaction of acrylonitrile transformation into acrylamide. It was demonstrated that an increase in the carbon content in the support led to an increase in the amount of adsorbed enzyme and, concurrently, to a decrease in its activity. The nitrile hydratase immobilized on Sibunit and carbon-containing aluminum α-oxide having a “crust” structure displayed the highest operational stability in acrylonitrile hydration. It was shown that the thermostability of adsorbed nitrile hydratase increased by one order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号