共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Yilin Yu Jie Yu Shengfang Ge Yun Su Xianqun Fan 《International journal of biological sciences》2023,19(3):811
Currently, cancer treatment mainly consists of surgery, radiotherapy, chemotherapy, immunotherapy, and molecular targeted therapy, of which radiotherapy is one of the major pillars. However, the occurrence of radioresistance largely limits its therapeutic effect. Metabolic reprogramming is an important hallmark in cancer progression and treatment resistance. In radiotherapy, DNA breakage is the major mechanism of cell damage, and in turn, cancer cells are prone to increase the metabolic flux of glucose, glutamine, serine, arginine, fatty acids etc., thus providing sufficient substrates and energy for DNA damage repair. Therefore, studying the linkage between metabolic reprogramming and cancer radioresistance may provide new ideas for improving the efficacy of tumor therapy. This review mainly focuses on the role of metabolic alterations, including glucose, amino acid, lipid, nucleotide and other ion metabolism, in radioresistance, and proposes possible therapeutic targets to improve the efficacy of cancer radiotherapy. 相似文献
3.
Progranulin (PGRN), a widely expressed glycoprotein with pleiotropic function, has been linked to a host of physiological processes and diverse pathological states. A series of contemporary preclinical disease models and clinical trials have evaluated various therapeutic strategies targeting PGRN, highlighting PGRN as a promising therapeutic target. Herein we summarize available knowledge of PGRN targeting in various kinds of diseases, including common neurological diseases, inflammatory autoimmune diseases, cancer, tissue repair, and rare lysosomal storage diseases, with a focus on the functional domain-oriented drug development strategies. In particular, we emphasize the role of extracellular PGRN as a non-conventional, extracellular matrix bound, growth factor-like conductor orchestrating multiple membrane receptors and intracellular PGRN as a chaperone/co-chaperone that mediates the folding and traffic of its various binding partners. 相似文献
4.
Interleukin-34 (IL-34), recently identified as a novel inflammatory cytokine and the second ligand for colony-stimulating factor-1 receptor, is known to play regulatory roles in the development, maintenance, and function of mononuclear phagocyte lineage cells – especially osteoclasts. Regarding its primary effect on osteoclasts, IL-34 has been shown to stimulate formation and activation of osteoclasts, which in turn magnifies osteoclasts-resorbing activity. In addition to its role in osteoclastogenesis, IL-34 has been implicated in inflammation of synovium via augmenting production of inflammatory mediators, in which altered IL-34 expression is regulated by pro-inflammatory cytokines responsible for cartilage degradation. Indeed, IL-34 has been documented to be highly expressed in inflamed synovium of rheumatoid arthritis (RA) and knee osteoarthritis (OA) patients, which are recognized as inflammatory arthritis. Furthermore, a number of clinical studies demonstrated that IL-34 levels were significantly increased in the circulation and synovial fluid of patients with RA and knee OA. Its levels were also found to be positively associated with disease severity – especially radiographic severity of both RA and knee OA patients. Interestingly, emerging evidence has accumulated that functional blockage of IL-34 with specific antibody can alleviate the severity of inflammatory arthritis. It is therefore reasonable to speculate that IL-34 may be developed as a potential biomarker and a new therapeutic candidate for inflammatory arthritis. To date, there are numerous studies showing IL-34 involvement and association with many aspects of inflammatory arthritis. Herein, this review aimed to summarize the recent findings regarding regulatory role of IL-34 in synovial inflammation-mediated cartilage destruction and update the current comprehensive knowledge on usefulness of IL-34-based treatment in inflammatory arthritis – particularly RA and knee OA. 相似文献
5.
Moreaux J Veyrune JL Reme T De Vos J Klein B 《Biochemical and biophysical research communications》2008,366(1):117-122
CD200 was recently described as a new prognosis factor in multiple myeloma and acute myeloid leukemia. CD200 is a membrane glycoprotein that imparts an immunoregulatory signal through CD200R, leading to the suppression of T-cell-mediated immune responses. We investigated the expression of CD200 in cancer using publicly available gene expression data. CD200 gene expression in normal or malignant human tissues or cell lines was obtained from the Oncomine Cancer Microarray database, Amazonia database and the ITTACA database. We found significant overexpression of CD200 in renal carcinoma, head and neck carcinoma, testicular cancer, malignant mesothelioma, colon carcinoma, MGUS/smoldering myeloma, and in chronic lymphocytic leukemia compared to their normal cells or their tissue counterparts. Moreover, we show that CD200 expression is associated with tumor progression in various cancers. Taken together, these data suggest that CD200 is a potential therapeutic target and prognostic factor for a large array of malignancies. 相似文献
6.
Liu CJ 《FEBS letters》2011,585(23):3675-3680
Progranulin (PGRN) is an autocrine growth factor with multiple functions. This review provides updates about the interplays of PGRN with extracellular matrix proteins, proteolytic enzymes, inflammatory cytokines, and cell surface receptors in cartilage and arthritis, with a special focus on the interaction between PGRN and TNF receptors (TNFR) and its implications in inflammatory arthritis. The paper also highlights Atsttrin, an engineered protein composed of three PGRN fragments that prevents inflammation in several inflammatory arthritis models. Identification of PGRN as a ligand of TNFR and an antagonist of TNFα signaling, together with the discovery of Atsttrin, not only betters our understanding of the pathogenesis of arthritis, but also provides new therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis. 相似文献
7.
Pregnancy‐associated plasma protein‐A (PAPP‐A) is a proteolytic enzyme that was discovered to increase local insulin‐like growth factor (IGF) availability for receptor activation through cleavage of inhibitory IGF binding proteins (IGFBPs). Reduced IGF signaling has been associated with increased lifespan and healthspan. Therefore, inhibition of PAPP‐A represents a novel approach to indirectly decrease the availability of bioactive IGF. Here, we will review data in support of PAPP‐A as a therapeutic target to promote healthy longevity. 相似文献
8.
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are incurable diseases characterized by progressive loss of cognitive or motor function, which construct a serious threat to the life quality of aging populations and their life spans. Apelin is an endogenous ligand for the G protein-coupled receptor. Apelin is reported to be detected not only in the cardiovascular system but also in neurons of the central nervous system (CNS). In addition, alterations in the expression level of apelin appear to play a pivotal role in various physiological processes including loss of structure or function of neurons, inflammatory responses, oxidative stress, Ca2+ signaling, apoptosis, and autophagy. All of these processes are intimately related to the occurrence of neurodegenerative diseases. Recently, apelin is reported to improve cognitive impairment in PD by antioxidant and antiapoptotic properties. Hence, it is becoming increasingly appreciated that altering the level of apelin can change the course or dictate the outcome of neurodegenerative events such as AD, PD, and HD, suggesting that apelin could be a potential target for the treatment of neurodegenerative diseases possibly acting on a variety of signaling pathways such as suppression of inflammatory responses, inhibition of oxidative stress, reduction of Ca2+ signaling, induction of autophagy, and suppression of apoptosis. 相似文献
9.
Ephrin type-A receptor 2(EphA2), a receptor tyrosine kinase, is overexpressed in human breast cancers often linked to poor patient prognosis. Accumulating evidence demonstrates that EphA2 plays important roles in several critical processes associated with malignant breast progression, such as proliferation,survival, migration, invasion, drug resistance, metastasis, and angiogenesis. As its inhibition through multiple approaches can inhibit the growth of breast cancer and restore drug sensitivity, EphA2 has become a promising therapeutic target for breast cancer treatment. Here, we summarize the expression,functions, mechanisms of action, and regulation of EphA2 in breast cancer. We also list the potential therapeutic strategies targeting EphA2. Furthermore, we discuss the future directions of studying EphA2 in breast cancer. 相似文献
10.
Coralie Reger de Moura Maxime Battistella Anjum Sohail Anne Caudron Jean Paul Feugeas Marie‐Pierre Podgorniak Cecile Pages Sarra Mazouz Dorval Oren Marco Suzanne Menashi Rafael Fridman Celeste Lebb Samia Mourah Fanlie Jouenne 《Pigment cell & melanoma research》2019,32(5):697-707
The discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family that signals in response to collagen and that has been implicated in cancer progression. In the present study, we investigated the expression and role of DDR1 in human melanoma progression. Immunohistochemical staining of human melanoma specimens (n = 52) shows high DDR1 expression in melanoma lesions that correlates with poor prognosis. DDR1 expression was associated with the clinical characteristics of Clark level and ulceration and with BRAF mutations. Downregulation of DDR1 by small interfering RNA (siRNA) in vitro inhibited melanoma cells malignant properties, migration, invasion, and survival in several human melanoma cell lines. A DDR tyrosine kinase inhibitor (DDR1‐IN‐1) significantly inhibited melanoma cell proliferation in vitro, and ex vivo and in tumor xenografts, underlining the promising potential of DDR1 inhibition in melanoma. 相似文献
11.
Liping Wang Zhangui Tang Junhui Huang 《Journal of cellular and molecular medicine》2023,27(13):1797-1805
Oral submucous fibrosis (OSF) is a chronic progressive fibrosis disease that affects in oral mucosal tissues. Interleukin (IL)-13 has been implicated in the development of fibrosis in multiple organs. Indeed, it contributes to diseases such as pulmonary fibrosis, liver cirrhosis among others. Currently, its expression in OSF and the specific mechanisms are not well understood. The aim of this study was to investigate the role of IL-13 in OSF and further explore whether IL-13 regulates—polarization of M2-macrophages in OSF. Initially, in the tissues of patients with OSF, we observed a high expression of M2-macrophages and IL-13 protein. Additionally, we found a correlation between the expression of IL-13 and the stage of OSF. Arecoline inhibited the proliferation of fibroblasts (FBs) and promoted IL-13 production in vitro. Furthermore, our observations revealed that M2-macrophages increased upon co-culturing M0-macrophages with supernatants containing the IL-13 cytokine. In conclusion, our study demonstrated that arecoline stimulates FBs leading to increased secretion of IL-13, which in turn IL-13 leads to polarization of M2-macrophages and promotes the occurrence of OSF. This suggests that IL-13 may be a potential therapeutic target of OSF. 相似文献
12.
XIAP: Apoptotic brake and promising therapeutic target 总被引:27,自引:0,他引:27
Martin Holcik Hilary Gibson Robert G. Korneluk 《Apoptosis : an international journal on programmed cell death》2001,6(4):253-261
The X-linked Inhibitor of Apoptosis, XIAP, is a key member of the newly discovered family of intrinsic inhibitors of apoptosis (IAP) proteins. IAPs block cell death both in vitro and in vivo by virtue of inhibition of distinct caspases. Although other proteins have been identified which inhibit upstream caspases, only the IAPs have been demonstrated to be endogenous repressors of the terminal caspase cascade. In turn, the caspase inhibiting activity of XIAP is negatively regulated by at least two XIAP-interacting proteins, XAF1 and Smac/DIABLO. In addition to the inhibition of caspases, recent discoveries from several laboratories suggest that XIAP is also involved in a number of other biologically significant cellular activities including modulation of receptor-mediated signal transduction and protein ubiquitination. XIAP is also translated by a rare cap-independent mechanism mediated by a specific sequence called IRES (for Internal Ribosome Entry Site) which is found in the XIAP 5 UTR. XIAP protein is thus synthesized under various conditions of cellular stress such as serum starvation and low dose -irradiation induced apoptosis, conditions that lead to the inhibition of cellular protein synthesis. The multiple biological activities of XIAP, its unique translational and post-translational control and the centrality of the caspase cascade make the control of XIAP expression an exceptionally promising molecular target for modulating apoptosis. Therapeutic benefits can be derived from both the suppression of inappropriate cell death such as in neurodegenerative disorders and ischemic injury or in the activation of latent cell death pathways such as in autoimmune disease and cancer where apoptosis induction is the desired outcome. 相似文献
13.
《生物化学与生物物理学报:癌评论》2022,1877(3):188723
Tumor suppressor activation or reactivation has long been a sought-after, yet elusive, therapeutic strategy for human cancer. Phosphatase and tensin homolog (PTEN) is one of the most frequently mutated tumor suppressor genes that regulate many biological processes, including proliferation, survival, cellular architecture, motility, energy metabolism, and genomic stability. As a dose-dependent tumor suppressor, subtle reductions in PTEN protein levels and activity will alter the gene-expression profiles involved in tumor progression, laying the foundation for PTEN reactivation in cancer treatment. However, treatment strategies that manipulate and/or replace PTEN activity to successfully block and reverse the destructive progression of cancer are not yet available. Ubiquitination/de-ubiquitination is one of the major regulatory mechanisms of PTEN by influencing its stability, subcellular localization, and activity. Recent discoveries, including new ubiquitination sites, E3 ubiquitin ligases, de-ubiquitinases of PTEN, and participation of accessory and adaptor proteins, have revealed new modes of PTEN ubiquitination regulation. Furthermore, either pharmaceutical or gene-targeted inhibition of E3 ligase-mediated ubiquitination of PTEN potently releases PTEN's anticancer activity and suppresses tumorigenesis. These findings shed light on therapeutic strategies for reactivating PTEN in cancer that target ubiquitination/de-ubiquitination. Therefore, a comprehensive understanding of the ubiquitination/de-ubiquitination regulation of PTEN could help improve clinical conceptualization and treatment of cancer. This review aimed to summarize and discuss recent discoveries on PTEN ubiquitination and de-ubiquitination, with the goal of providing a systematic summary in the field and promoting clinical transformation of targeting ubiquitination for PTEN reactivation in the treatment of cancer. 相似文献
14.
15.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2016,1860(9):1973-1988
BackgroundAurora kinases are key mitotic kinases executing multiple aspects of eukaryotic cell-division. The apicomplexan homologs being essential for survival, suggest that the Leishmania homolog, annotated LdAIRK, may be equally important.MethodsBioinformatics, stage-specific immunofluorescence microscopy, immunoblotting, RT-PCR, molecular docking, in-vitro kinase assay, anti-leishmanial activity assays, flow cytometry, fluorescence microscopy.ResultsLdairk expression is seen to vary as the cell-cycle progresses from G1 through S and finally G2M and cytokinesis. Kinetic studies demonstrate their enzymatic activity exhibiting a Km and Vmax of 6.12 μM and 82.9pmoles·min− 1mg− 1 respectively against ATP using recombinant Leishmania donovani H3, its physiological substrate. Due to the failure of LdAIRK −/+ knock-out parasites to survive, we adopted a chemical knock-down approach. Based on the conservation of key active site residues, three mammalian Aurora kinase inhibitors were investigated to evaluate their potential as inhibitors of LdAIRK activity. Interestingly, the cell-cycle progressed unhindered, despite treatment with GSK-1070916 or Barasertib, inhibitors with greater potencies for the ATP-binding pocket compared to Hesperadin, which at nanomolar concentrations, severely compromised viability at IC50s 105.9 and 36.4 nM for promastigotes and amastigotes, respectively. Cell-cycle and morphological studies implicated their role in both mitosis and cytokinesis.ConclusionWe identified an Aurora kinase homolog in L. donovani implicated in cell-cycle progression, whose inhibition led to aberrant changes in cell-cycle progression and reduced viability.General significanceHuman homologs being actively pursued drug targets and the observations with LdAIRK in both promastigotes and amastigotes suggest their potential as therapeutic-targets. Importantly, our results encourage the exploration of other proteins identified herein as potential novel drug targets. 相似文献
16.
IMA-638 and IMA-026 are humanized IgG1 monoclonal antibodies (mAbs) that target non-overlapping epitopes of IL-13. Separate first-in-human single ascending dose studies were conducted for each mAb. These studies had similar study designs, but mild to moderate asthmatics were recruited for the IMA-638 study and healthy subjects were recruited for the IMA-026 study. IMA-638 and IMA-026 showed similar pharmacokinetic (PK) profiles, but very different total IL-13 (free and drug bound IL-13) profiles; free IL13 was not measured. IMA-026 treatment induced a dose-dependent accumulation of total IL-13, while IMA-638 treatment led to a much smaller accumulation without any clear dose-response. To understand the differences between the two total IL-13 profiles and to predict the free IL-13 profiles for each mAb treatment, a mechanistic PK/pharmacodynamic model was developed. PK-related parameters were first fit to the mean PK profiles of each mAb separately; thereafter, the target-related parameters were fit to both total IL-13 profiles simultaneously. The IL-13 degradation rate was assumed to be the same for asthma patients and healthy subjects. The model suggests that an approximately 100× faster elimination of IL-13-IMA-638 complex than IL-13-IMA-026 complex could be responsible for the differences observed in total IL-13 profiles for the two mAbs. Furthermore, the model predicts that IMA-638 administration results in greater and more prolonged free IL-13 inhibition than equivalent dosing of IMA-026 despite similar binding KD and PK profile. In conclusion, joint modeling of two similar molecules provided mechanistic insight that the elimination rate of mAb-target complex can regulate the degree of free target inhibition. 相似文献
17.
18.
19.
IL-13 is a Th2 cytokine that regulates the effector functions and alters the phenotype and function of normal macrophages switching to alternatively activated or type II polarized macrophages. The type II polarized macrophages differ from normal macrophages greatly in terms of receptor expression, NO and other cytokine production. It produces chemokines that preferentially attract Th2 cells, which increases the local concentration of Th2 cytokines including IL-13. As a result, normal macrophage population gets polarized as type II macrophages at the site of the tumor-microenvironment. In the present investigation, we have determined the IL-13 serum level in DL-bearing host and the effect of IL-13 on peritoneal macrophages harvested from normal healthy, control DL-bearing, and treated DL-bearing mice with respect to reactive oxygen intermediate production. It has been observed that IL-13 significantly inhibits the ROI generation in all macrophage types while by neutralizing with in vivo administration of IL-13Rα2 and/or potentiation with Th1 cytokine, the production of reactive oxygen intermediate increases, which indicates that IL-13Rα2 and/or potentiation with Th1 cytokine could restore the cytotoxic ability of macrophage in a murine T-cell lymphoma. 相似文献
20.
Non-Hodgkin lymphoma (NHL) is a hematological malignancy of the immune system, and, as with autoimmune and inflammatory diseases (ADs), is influenced by genetic variation in the major histocompatibility complex (MHC). Persons with a history of specific ADs also have increased risk of NHL. As the coexistence of ADs and NHL could be caused by factors common to both diseases, here we examined whether some of the associated genetic signals are shared. Overlapping risk loci for NHL subytpes and several ADs were explored using data from genome-wide association studies. Several common genomic regions and susceptibility loci were identified, suggesting a potential shared genetic background. Two independent MHC regions showed the main overlap, with several alleles in the human leukocyte antigen (HLA) class II region exhibiting an opposite risk effect for follicular lymphoma and type I diabetes. These results support continued investigation to further elucidate the relationship between lymphoma and autoimmune diseases. 相似文献