首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,β-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol−1 and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h−1 OD600 −1 at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M n = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T d10 = 394 °C and a glass transition temperature of T g = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.

  相似文献   

2.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

3.
Inulin has been widely used as a cheap bioresource for producing many valuable products by enzymatic hydrolysis or microbial fermentation, such as high-fructose syrup and fructooligosaccharides. In this work, a one-pot two-enzyme reaction system was developed to produce d-allulose from inulin using A. piperis exoinulinase and Dorea sp. d-Allulose 3-epimerase. The exoinulinase that was identified from Aspergillus piperis CBS 112811 was cloned and intracellularly expressed in Escherichia coli. The enzyme displayed the maximal activity as 3750 U mg−1 at pH 6.0 and 55 °C. For the effects of different cations, Mn2+ simulated the enzyme activity by 41 %. When 10 g L−1 inulin was hydrolyzed by A. piperis exoinulinase, the conversion rate reached 98 % within 6 h. Furthermore, the optimum pH, temperature and the ratio of the two enzymes loaded for one-pot reaction were measured to be pH 6.0, 60 °C and 15/15 U mL−1, respectively. The conversion rate of inulin to d-allulose reached 23.3 % after reaction for 4 h with 10 g L−1 inulin. When adding 100 g L−1 as a substrate, 21.4 g L−1 d-allulose was produced using the two-enzyme system.  相似文献   

4.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

5.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

6.
Pakistan’s most of the land is less productive or no productivity at all due to erosion and salinity of the soil, which can be utilized to develop fisheries. The project, “Survival, growth and body composition of Cyprinus carpio under different salinity regimes” was undertaken in two phases. In the first phase susceptibility of Cyprinus carpio at four salinity levels in triplicate within 0–10 g L−1NaCl for 96 h in each aquarium was checked after one week acclamation at 0 g L−1, 2 g L−1 and 4 g L−1 NaCl. LC50 values varied from 7.67 to 10.65 g L−1 after 96 h for C. carpio. Percentage mortality of the fish and important water quality parameters after every 12 h were observed for a period of 96-h. Probit analysis showed that 96-h LC50 values ranged from 7.67 to 10.65 g L−1. During experimental period aquaria water temperature ranged from 29.6 to 33.7 °C, pH values fluctuated between 7.8 and 9.7, Electrical conductivity values ranged from 2.40 to 20.13 dSm−1 and Dissolved oxygen ranged between 2.23 and 10 mg L−1. Sub-lethal salt concentration i.e. 0 g L−1 to 3 g L−1 NaCl upto 40 days showed that growth of C. carpio decreased with the increase of water salinity levels and ceased at 4 g L−1 salinity and increase in salinity have negatively affected hematological parameters.  相似文献   

7.
《Process Biochemistry》2007,42(1):77-82
The production of C595 diabody fragment (dbFv) in Escherichia coli (E. coli) HB2151 clone has been explored. The comparison of fermentation processes mode demonstrated that a higher biomass inoculum operation enhanced C595 dbFv production. It was demonstrated that a concentration of 12.1 mg l−1 broth of dbFv and a cell concentration of 23.6 g l−1 broth were achieved at the end of 75 l fermentation.  相似文献   

8.
To achieve sucrose-metabolizing capability, different sucrose utilization operons have been introduced into E. coli that cannot utilize sucrose. However, these engineered strains still suffer from low growth rates and low sucrose uptake rates. In this study, cell surface display system was adopted in engineered E. coli AFP111 for succinic acid production from sucrose and molasses directly. Invertase (CscA) from E. coli W was successfully anchored to outer membrane by fusion with OmpC anchoring motif, and the displayed CscA showed high extracellular activity. Compared with the sucrose permease system, the cell surface display system consumed less ATP during sucrose metabolism. When less ATP was consumed by AFP111/pTrcC-cscA, the succinic acid productivity from sucrose was 23% higher than that by AFP111/pCR2.1-cscBKA that having the sucrose permease system. As a result, 41 g L−1 and 36.3 g L−1 succinic acid were produced by AFP111/pTrcC-cscA from sucrose and sugarcane molasses respectively at 34 h in 3-L fermentor during dual-phase fermentation. In addition, 79 g L−1 succinic acid was accumulated with recovered AFP111/pTrcC-cscA cells at the end of dual-phase fermentation in 3-L fermentor, and the overall yield was 1.19 mol mol−1 hexose.  相似文献   

9.
10.
N-Ethylglutamate (NEG) was detected in Escherichia coli BL21 cells grown on LB broth, and it was found to occur at a concentration of ∼4 mM in these cells under these conditions. The same cells grown on M9 glucose medium contained no detectable amount of NEG. Analysis of the LB broth showed the presence of NEG, a compound never before reported as a natural product. Isotope dilution analysis showed that it occurred at a concentration of 160 μM in LB broth. Analyses of yeast extract and tryptone, the organic components of LB broth, both showed the presence NEG. It was demonstrated that NEG can be generated during the autolysis of the yeast used in the preparation of the yeast extract. Growth of these E. coli cells in LB broth prepared in deuterated water showed no incorporation of deuterium into NEG, demonstrating that E. coli cells did not generate the NEG. Cell growth rates were not affected by the addition of 5 mM NEG to either LB or M9 glucose medium. l-[ethyl-2H4]NEG was found to be readily incorporated into the cells and metabolized by the cells. From these results, it was concluded that all of the NEG present in the cells was taken up from the medium. NEG could serve as the sole nitrogen source for E. coli when grown on M9 glucose medium in the presence of glucose but could not serve as the sole carbon source on M9 medium in the absence of glucose.During work on developing methods for the analysis of the amino acids generated by recombinant archaeal mutases, I developed procedures for the recovery and analysis of the free amino acids present in cell extracts of Escherichia coli. When these methods were applied to analysis of E. coli grown on LB broth, I always found a large amount of an unknown amino acid. Here I report on the identification of this amino acid as N-ethylglutamate (NEG). NEG has never been reported as a natural product. I demonstrate that NEG is readily taken up by E. coli and can serve as the sole source of nitrogen when the cells are grown on M9 glucose medium.  相似文献   

11.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

12.
As a follow-up to earlier studies on the emission of long-chain alcohols from broth cultures of Gram-negative enteric bacteria, E. coli was examined for the production of 1-octanol, 1-decanol, and 1-dodecanol. Ten strains of E. coli cultured in tryptic soy broth were assayed for volatile metabolites using solid-phase microextraction. Long-chain alcohols were produced by all strains with 1-decanol predominating with production ranging from 23.6 ng mL−1 to 148 ng mL−1. The production of long-chain alcohols followed the onset of the exponential growth phase of the broth culture. Doubling the concentration of glucose (5 g L−1) in the broth had no effect on the concentration of long-chain alcohols produced. Addition of octanoic, decanoic, or dodecanoic acids (as K+ salts) to the broth (100 mg L−1) markedly increased the production of the corresponding alcohols by E. coli, ranging from a 13-fold increase for decanol to a 51-fold increase for dodecanol. However, decanol remained the predominant alcohol detected in all assays. These neutral volatile alcohols may have application as vapor-phase indicators for certain classes of bacteria, particularly, Gram-negative enteric bacteria.  相似文献   

13.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

14.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

15.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

16.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

17.
The organism most frequently encountered during the 1971 outbreak of enteropathogenic Escherichia coli (EPEC) in soft ripened cheese was a strain that failed to ferment lactose broth within 48 h. Since existing methods for E. coli are dependent upon fermentation of this sugar, such strains can remain undetected, particularly when present in low numbers. Therefore, a cultural testing procedure was developed to insure isolation of both lactose-positive and -negative strains. This method used GN broth, modified by substituting lactose and arabinose for glucose and D-mannitol, as an enrichment medium. MacConkey agar, used as a plating medium, was modified by substituting arabinose for half the lactose. The cultural procedure was used in conjunction with a fluorescent antibody method to screen cheese for the presence of presumptive enteropathogenic E. coli. Suspected isolates were subjected to further biochemical and serological testing and identified as members of specific serogroups. These methods were used for the analysis of over 2,000 wheels of cheese; over 10% of the samples tested were found to contain strains belonging to six different serogroups associated with diarrheal diseases. No attempt was made to confirm pathogenicity by in vivo tests. Enumeration of E. coli in cheese showed that numbers increased during storage. Cheese with less than 10 organisms/g initially increased to over 105 at room temperature and over 103 at 4 C within 10 days. With higher initial counts, levels up to 109 were found at 4 C. These studies showed that the high levels of E. coli encountered in these products cannot be used as a direct indicator of post-processing contamination.  相似文献   

18.
《Process Biochemistry》2014,49(7):1182-1188
An efficient method for removing microbial cells and macromolecular impurities and purification of surfaction from fermentation broth produced by Bacillus amyloliquefaciens fmb50 was carried out in this study. Among three inorganic flocculants and a macromolecular flocculants, the combination use of CaCl2 and Na2HPO4 was the most effective separation process. Addition of 50% ethanol into fermentation broth could not only disrupt the surfactin micells, but also promote the permeating of surfactin in filtration. The flocculation condition was optimized by an L9 (34) orthogonal design. The light transmittance, surfactin recovery rate, protein removal rate and filtration flux could reach to 96.3%, 95.31%, 56.59% and 3204.41 L m−2 h−1 respectively, the surfactin purity reached to 79.5% and the residual protein was 8.1% in separated product under the optimal flocculation condition (flocculants dosage 0.5%, pH 5.0, and temperature 35 °C). Validation test also demonstrated stable results under the optimal conditions. Due to higher efficiency, lower cost and scale-up more easily of flocculation and filtration processes, it is feasible to separate surfactin from fermentation broth.  相似文献   

19.
The continuous production of nisin, an antibiotic polypeptide, by Lactococcus lactis in a bioreactor system coupled to a microfiltration module is described. Nisin productivity with respect to both cultivation time (ND) and the quantity of glucose consumed (ND/Sf) in continuous production was enhanced by maintaining a low concentration of lactic acid in the broth. A maximum ND of 7.80 × 104l−1·h−1 and ND/Sf of 5.20 × 103 U·g−1·h−1 were obtained when the glucose concentration in the feed medium was 15 g/l. These values represent about 4.1- and 4.5-fold increases, respectively, over those obtained in batch culture.  相似文献   

20.
In this work, we performed recovery of ethanol from a fermentation broth of banana pseudostem by pervaporation (PV) as a lower-energy-cost alternative to traditional separation processes such as distillation. As real fermentation systems generally contain by-products, it was investigated the effects of different components from the fermentation broth of banana pseudostem on PV performance for ethanol recovery through commercial flat sheet polydimethylsiloxane (PDMS) membrane. The experiments were compared to a binary solution (ethanol/water) to determine differences in the results due to the presence of fermentation by-products. A real fermented broth of banana pseudostem was also used as feed for the PV experiments. Seven by-products from fermented broth were identified: propanol, isobutanol, methanol, isoamyl alcohol, 1-pentanol, acetic acid, and succinic acid. Moreover, the residual sugar content of 3.02 g/L1 was obtained. The presence of methanol showed the best results for total permeate flux (0.1626 kg·m−2·h−1) and ethanol permeate flux (0.0391 kg·m−2·h−1) during PV at 25°C and 3 wt% ethanol, also demonstrated by the selectivity and enrichment factor. The lowest total fluxes of permeate were observed in the experiments containing the acids. Better permeance of 0.1171 from 0.0796 kg·m−2·h−1 and membrane selectivity of 9.77 from 9.30 were obtained with real fermentation broth than with synthetic solutions, possibly due to the presence of by-products in the multicomponent mixtures, which contributed to ethanol permeation. The results of this work indicate that by-products influence pervaporation of ethanol with hydrophobic flat sheet membrane produced from the fermented broth of banana pseudostem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号