首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.  相似文献   

2.
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome‐wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

3.
This report constitutes the seventh update of the human obesity gene map incorporating published results up to the end of October 2000. Evidence from the rodent and human obesity cases caused by single‐gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci uncovered in human genome‐wide scans and in cross‐breeding experiments in various animal models, and association and linkage studies with candidate genes and other markers are reviewed. Forty‐seven human cases of obesity caused by single‐gene mutations in six different genes have been reported in the literature to date. Twenty‐four Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different quantitative trait loci reported from animal models currently reaches 115. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 130 studies reporting positive associations with 48 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map reveals that putative loci affecting obesity‐related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

4.
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome‐wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome‐wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http:obesitygene.pbrc.edu .  相似文献   

5.
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross‐breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single‐gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity‐related phenotypes from 50 genome‐wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http:obesitygene.pbrc.edu .  相似文献   

6.
PÉRUSSE, LOUIS, YVON C. CHAGNON, JOHN WEISNAGEL, AND CLAUDE BOUCHARD. The human obesity gene map: the 1998 update. Obes Res. 1999;7:111–129. An update of the human obesity gene map incorporating published results up to the end of October 1998 is presented. Evidence from the human obesity cases caused by single gene mutations; other Mendelian disorders exhibiting obesity as a clinical feature; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. The most noticeable changes from the 1997 update is the number of obesity cases due to single gene mutations that increased from three cases due to mutations in two genes to 25 cases due to 12 mutations in seven genes. A look at the obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes are found on all but chromosome Y of the human chromosomes. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 3, 6, 7, 8, 9, 11, 17, 19, 20, and X) and several on one chromosome arm only (4q, 5q, 10q, 12q, 13q, 15q, 16p, and 22q). The number of genes and other markers that have been associated or linked with human obesity phenotypes is increasing very rapidly and now approaches 27.  相似文献   

7.
An update of the human obesity gene map incorporating published results up to October 1997 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature; single-gene mutation rodent models; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all of these loci reveals that all but chromosome Y of the 24 human chromosomes are represented. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 6, 8, 11, and 20) and several on one chromosome arm only (3p, 4q, 5q, 7q, 12q, 13q, 15q, 15p, 22q, and Xq). Studies reporting negative association and linkage results are also listed, with the exception of the unlinked markers from genome-wide scans.  相似文献   

8.
This report constitutes the sixth update of the human obesity gene map incorporating published results up to the end of October 1999. Evidence from the rodent and human obesity cases caused by single gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTL) uncovered in human genome‐wide scans and in crossbreeding experiments with mouse, rat, pig and chicken models, association and linkage studies with candidate genes and other markers is reviewed. Twenty‐five human cases of obesity can now be explained by variation in five genes. Twenty Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different QTLs reported from animal models reaches now 98. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 89 reports of positive associations pertaining to 40 candidate genes. Finally, 44 loci have linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity‐related phenotypes can be found on all autosomes, with chromosomes 14 and 21 showing each one locus only. The number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes continues to increase and is now well above 200.
Figure 1 Open in figure viewer PowerPoint The 1999 human obesity gene map. The map includes all putative obesity‐related phenotypes identified from the various lines of evidence reviewed in the article. The chromosomes and their regions are from the Gene Map of the Human Genome web site hosted by the National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD (URL: http:www.ncbi.nlm.nih.gov ). The chromosome number and the size of each chromosome in megabases (Mb) are given at the top and bottom of the chromosomes, respectively. Loci abbreviations and full names are given in the Appendix. The abbreviations for QTLs are given in Table 4 .  相似文献   

9.
An update of the human obesity gene map up to October 1996 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature, single-gene mutation rodent models, quantitative trait loci uncovered in crossbreeding experiments with mouse, rat, and pig models, association and case-control studies with candidate genes, and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all these loci reveals that only 4 of the 24 human chromosomes are not yet represented, i.e., 9, 18, 21, and Y. Several chromosome arms are characterized by the presence of several putative loci. The following arms include at least three such loci: 1p, 1q, 3p, 4q, 6p, 7q, 8p, 8q, 11p, 11q, 15q, 20q, and Xq. Studies with negative association and linkage results are also reviewed.  相似文献   

10.
An overview of the status of the human obesity gene map up to October 1995 is presented. The evidence is drawn from several lines of clinical and experimental research. First, 12 loci linked to Mendelian disorders exhibiting obesity as one clinical feature are reviewed. Second, six loci causing obesity in rodent models of the disease are considered. Third, eight chromosomal regions where quantitative trait loci, identified by crossbreeding experiments with informative strains of mice, are defined. Fourth, 10 candidate genes exhibiting a statistical association with BMI or body fat are introduced. Fifth, nine loci found to be linked to a relevant phenotype are listed and the four cases for which the evidence for linkage is strongest are emphasized. The latter are mapped to 2p25, 6p21.3, 7q33 and 20q12-13.11. Finally, the studies that have concluded that there was no association or linkage with a marker or gene are also reviewed. It is recommended that a system be developed by the obesity research community to ensure that an accurate and easily accessible computerized version of the human obesity gene map becomes available in the near future.  相似文献   

11.
Liu P  Vikis H  Lu Y  Wang D  You M 《PloS one》2007,2(7):e651
Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silico gene-discovery strategy through genome-wide association (GWA) scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative trait loci (QTLs) from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity) as well as behavioral, hematological, immunological, metabolic, and neurological traits. 67% of QTLs were refined into genomic regions <0.5 Mb with approximately 40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified two QTL genes, Adam12 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs and achieve single-gene resolution. These high-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.  相似文献   

12.
The candidate gene approach in plant genetics: a review   总被引:16,自引:0,他引:16  
The candidate gene (CG) approach has been applied in plant genetics in the past decade for the characterisation and cloning of Mendelian and quantitative trait loci (QTLs). It constitutes a complementary strategy to map-based cloning and insertional mutagenesis. The goal of this paper is to present an overview of CG analyses in plant genetics. CG analysis is based on the hypothesis that known-function genes (the candidate genes) could correspond to loci controlling traits of interest. CGs refer either to cloned genes presumed to affect a given trait (`functional CGs') or to genes suggested by their close proximity on linkage maps to loci controlling the trait (`positional CGs'). In plant genetics, the most common way to identify a CG is to look for map co-segregation between CGs and loci affecting the trait. Statistical association analyses between molecular polymorphisms of the CG and variation in the trait of interest have also been carried out in a few studies. The final validation of a CG will be provided through physiological analyses, genetic transformation and/or sexual complementation. Theoretical and practical applications of validated CGs in plant genetics and breeding are discussed.  相似文献   

13.
SUMMARY: Genetic linkage and association studies define quantitative trait loci (QTLs) and susceptibility loci (SLs) that influence the phenotype of polygenic traits. A web-accessible application was created to identify intergenomic consensuses to fine map QTLs and SLs in silico and select particularly promising candidate genes for such traits. Furthermore, this approach offers an empirical evaluation of animal models for their applicability to the study of human traits. AVAILABILITY: http://qtl.pzr.uni-rostock.de/qtlmix.php CONTACT: serrano@pzr.uni-rostock.de.  相似文献   

14.
Although several genomewide scans have identified quantitative-trait loci influencing several obesity-related traits in humans, genes influencing normal variation in obesity phenotypes have not yet been identified. We therefore performed a genome scan of body mass index (BMI) on Mexican Americans, a population prone to obesity and diabetes, using a variance-components linkage analysis to identify loci that influence BMI. We used phenotypic data from 430 individuals (26% diabetics, 59% females, mean age +/- SD = 43 +/- 17 years, mean BMI +/- SD = 30.0 +/- 6.7, mean leptin (ng/ml) +/- SD = 22.1 +/- 17.1) distributed across 27 low-income Mexican American pedigrees who participated in the San Antonio Family Diabetes Study (SAFDS) for whom a 10-15-cM map is available. In this genomewide search, after accounting for the covariate effects of age, sex, diabetes, and leptin, we identified a genetic region exhibiting the most highly significant evidence for linkage (LOD 4.5) with BMI on chromosome 4p (4p15.1) at 42 cM, near marker D4S2912. This linkage result has been confirmed in an independent linkage study of severe obesity in Utah pedigrees. Two strong positional candidates, the human peroxisome proliferator-activated receptor gamma coactivator 1 (PPARGC1) and cholecystokinin A receptor (CCKAR) with major roles in the development of obesity, are located in this region. In conclusion, we identified a major genetic locus influencing BMI on chromosome 4p in Mexican Americans.  相似文献   

15.
16.
Quantitative trait loci (QTLs) analysis has been used to examine natural variation of phenotypes in the mouse somatosensory cortex, hippocampus, cerebellum, and amygdala. QTL analysis has also been utilized to map and identify genes underlying anatomical features such as muscle, organ, and body weights. However, this methodology has not been previously applied to identification of anatomical structures related to gustatory phenotypes. In this study, we used QTL analysis to map and characterize genes underlying tongue size, papillae number, and papillae area. In a set of 43 BXD recombinant inbred (RI) mice (n = 111) and 2 parental strains (C57BL/6J and DBA/2J; n = 7), we measured tongue length, width, and weight. In a subset of 23 BXD RI mice and the parental mice, we measured filiform and fungiform papillae number and fungiform papillae area. Using QTL linkage analysis (through WebQTL), we detected 2 significant and noninteracting QTLs influencing tongue length on chromosomes 5 and 7. We also found a significant QTL on chromosome 19 underlying fungiform papillae area and a suggestive QTL on chromosome 2 linked to fungiform papillae number. From these QTLs, we identified a number of candidate genes within the QTL intervals that include SRY-box containing gene, nebulin-related anchoring protein, and actin-binding LIM protein 1. This study is an important first step in identifying genetic factors underlying tongue size, papillae size, and papillae number using QTL analysis.  相似文献   

17.
To understand the genetic characteristics of the traits related to differentiation between cultivated rice and its wild progenitor, genetic factors controlling domestication- and yield-related traits were identified using a BC3F2 population derived from an accession of common wild rice (donor, Oryza rufipogon Griff.) collected from Yuanjiang, Yunnan province, China, and an indica cultivar, Teqing (recipient, Oryza sativa L.). A genetic linkage map consisting of 125 simple sequence repeat (SSR) markers was constructed. Based on the phenotypes of the 383 BC3F2 families evaluated in two environments, two domestication-related morphological traits, panicle shape and growth habit, were found to be controlled by single Mendelian factors. This implies that the recessive mutations of single genes controlling some morphological traits could have been easily selected during early domestication. By single-point analysis and interval mapping, 59 putative quantitative trait loci (QTLs) that influence 11 quantitative traits were detected at two sites, and 37.5% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield-related traits in the Teqing background. Regions with significant QTLs for domestication- and yield-related traits were detected on chromosomes 1, 4, 5, 7, 8, and 12. Fine mapping and cloning of these domestication-related genes and QTLs will be useful in elucidating the origin and differentiation of Asian cultivated rice in the future.  相似文献   

18.
Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.  相似文献   

19.
Genome scans for diabetes have identified many regions of the human genome that correlate with the disease state. To identify candidate genes for type 2 diabetes, we examined the transgenic A-ZIP/F-1 mouse. This mouse model has no white fat, resulting in abnormal levels of glucose, insulin, and leptin, making the A-ZIP/F-1 mice a good model for lipodystrophy and insulin resistance. We used cDNA-based microarrays to find differentially expressed genes in four tissues of these mice. We examined these results in the context of human linkage scans for lipodystrophy, obesity, and type 2 diabetes. We combined 199 known human orthologs of the misregulated mouse genes with 33 published human genome scans on a genome map. Integrating expression data with human linkage results permitted us to suggest and prioritize candidate genes for lipodystrophy and related disorders. These genes include a cluster of 3 S100A genes on chromosome 1 and SLPI1 on chromosome 20.  相似文献   

20.
The identification of quantitative trait loci (QTLs) based on anchor markers, especially candidate genes that control a trait of interest, has been noted to increase the power of QTL detection. Since these markers can be scored as co-dominant data, they are also valuable for comparing and integrating the QTL linkage maps from diverse mapping populations. To estimate the position and effects of QTLs linked to oil yield traits in African oil palm, co-dominant microsatellites (SSR) and candidate gene-based sequence polymorphisms were applied to construct a linkage map for a progeny showing large differences in oil yield components. The progeny was genotyped for 97 SSR markers, 93 gene-linked markers, and 12 non-gene-linked SNP markers. From these, 190 segregating loci could be arranged into 31 linkage groups while 12 markers remained unmapped. Using the single marker linkage, interval mapping and multiple QTL methods, 16 putative QTLs on seven linkage groups affecting important oil yield related traits such as fresh fruit bunch yield (FFB), ratio of oil per fruit (OF), oil per bunch (OB), fruit per bunch (FB) and wet mesocarp per fruit (WMF) could be identified in the segregating population with estimated values for explained variance ranging from 12.4 % to 54.5 %. Markers designed from some candidate genes involved in lipid biosynthesis were found to be mapped near significant QTLs for various economic yield traits. Associations between QTLs and potential candidate genes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号