首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lizard fauna of sand‐mined dunes of the central coast of New South Wales, Australia has been shown to be dominated by Ctenotus robustus and Ctenotus taeniolatus (Scincidae), with relative abundance changing with time since mining. However, there is little published information on how this lizard fauna compares to that of the undisturbed open forest that previously grew on these sites. Here, existing data are added to in order to produce a longer chronosequence of times since sand‐mining (4, 8, 14 and 20 years) than has been examined previously. The new data are compared to those from unmined forests. Ctenotus robustus and C. taeniolatus dominated lizard captures on mined areas, with peak abundances at 8 and 14 years, respectively. Lampropholis guichenoti (Scincidae) was at low abundance until 20 years post‐mining and L. delicata was present only at 20 years post‐mining. Unmined forest burned 4, 8 or 14 years ago had a significantly different lizard community from that of sand‐mined areas. Ctenotus robustus and C. taeniolatus were absent from unmined forest at all post‐fire periods. Lampropholis guichenoti and Lampropholis delicata were numerically dominant in forest, with increasing abundance of L. guichenoti with time since fire. Thus the composition of the lizard community on these coastal dunes is not solely determined by time since disturbance per se. Comparisons of sites on the basis of accumulated leaf litter showed a significant relationship between Lampropholis abundance and litter density. On sand‐mined sites and forested sites with similar leaf litter densities, the abundances of L. guichenoti were similar. As Ctenotus were absent from unmined forest, we could not compare their distribution in unmined and mined areas. However, negative correlations of Ctenotus abundance with canopy cover and understorey vegetation density offer a possible explanation for the absence of these species from forest.  相似文献   

2.
Abstract The distributions of lizards across habitat edges delimiting open‐forest and regenerating sand‐mined areas as a function of distance from the edge were studied at Tomago, New South Wales, Australia. Pitfall‐trapping was used to survey lizards across the northern edges of four forest fragments, to determine if lizards displayed characteristic responses across the edge, and whether these could be explained by the different habitat conditions. At each site, 11 equally spaced drift fences (each parallel to the edge) were arranged in a transect running perpendicular to the edge, and stretching 50 m into each habitat type. Captures of Amphibolurus muricatus (Agamidae) decreased substantially across the edge from the mine‐path to the forest so that it was identified as a mine‐path specialist lizard species. Captures of two skink species decreased across the mine‐path before reaching the edge, and were not caught (Ctenotus taeniolatus) or were seldom caught (Ctenotus robustus) in the forest, so they were identified as mine‐path specialist, edge avoiding, lizard species. Captures of Lampropholis delicata (Scincidae) increased across edges into the forest, consistent with the expectation for a forest specialist. Regression analyses indicated the responses to edges of three lizard species (A. muricatus, C. robustus and C. taeniolatus) were negatively correlated with canopy cover (probably due to its influence on temperature, as captures of A. muricatus and C. robustus were also correlated positively with mean daily temperature). In addition, the response of C. robustus correlated negatively with a vegetation factor (dense, even vegetation in the first 50 cm from ground level). The response of L. delicata correlated positively with understorey height. We have identified edge response strategies for four species of lizards across edges delimiting temperate open‐forest and mined areas, and identified habitat and microclimate variables that may have driven these responses.  相似文献   

3.
The terrestrial lizard fauna of a regenerating mining path situated in open forest on coastal sand dunes was surveyed by pitfall trapping. The regeneration age of the series of chronosequence plots used ranged from 3.9 to 15.9 years. No lizards were recorded on plots less than 5.9 years old. Only four species of lizard were regularly found on the mining path. The skink Ctenotus robustus was the first colonizer and attained peak abundance and biomass after 9 years’ regeneration. Amphibolurus muricatus and Ctenotus taeniolatus were less abundant than C. robustus and did not appear on the mining path until 9 to 11 years’ regeneration. The abundance of C. taeniolatus continued to increase up to the oldest age class (16 years). Linear multiple regression analysis showed that sparse patchy vegetation in the 0–1 m layer and the amount of live shrub cover jointly accounted for 72% of the variance in abundance and 68% of variance in biomass for C. robustus. Fifty percent of the variance in C. taeniolatus abundance was explained by the proportion of plant species endemic to forest, regeneration age and the patchiness in understorey vegetation height. However, 67% of C. taeniolatus biomass was accounted for by plant species richness, plant species diversity, and the proportion of endemic forest and heath plant species. Some lizard species recorded from the surrounding forest were not found on the mining path. Lizards appear to recolonize revegetated areas more slowly than some other animal groups; this ‘sensitivity’ implies that they can act as important ‘indicator species’ of successful regeneration in disturbed areas. The non-linear response with time of some habitat variables makes it difficult to predict the time required for the complete rehabilitation of the mining path; however, it seems likely that a period well in excess of 20 years may be necessary before the lizard fauna on the mining path reaches premined levels.  相似文献   

4.
A fundamental part of developing effective biodiversity conservation is to understand what factors affect the distribution and abundance of particular species. However, there is a paucity of data on ecological requirements and habitat relationships for many species, especially for groups such as reptiles. Furthermore, it is not clear whether habitat relationships for particular species in a given environment are transferable to other environments within their geographical range. This has implications for the type of ‘landscape model’ used to guide management decisions in different environments worldwide. To test the hypothesis that species‐specific habitat relationships are transferable to other environments, we present microhabitat models for five common lizard species from a poorly studied habitat – insular granite outcrops, and then compared these relationships with studies from other environments in south‐eastern Australia. We recorded twelve species from five families, representing 699 individuals, from 44 outcrops in the south‐west slopes of New South Wales. Five lizard species were abundant and accounted for 95% of all observations: Egernia striolata, Ctenotus robustus, Cryptoblepharus carnabyi, Morethia boulengeri and Carlia tetradactyla (Scincidae). Linear regression modelling revealed suites of different variables related to the abundance patterns of individual species, some of which were broadly congruent with those measured for each species in other environments. However, additional variables, particular to rocky environments, were found to relate to reptile abundance in this environment. This finding means that species' habitat relationships in one habitat may not be readily transferable to other environments, even those relatively close by. Based on these data, management decisions targeting reptile conservation in agricultural landscapes, which contain rocky outcrops, will be best guided by landscape models that not only recognize gradients in habitat suitability, but are also flexible enough to incorporate intraspecies habitat variability.  相似文献   

5.
Abstract Squamate autapomorphies seen in sperm of the Scincidae (e.g. Ctenotus robustus, Carlia pectoralis, Cryptoblepharus virgatus, and Lampropholis delicata) are penetration of the fibrous sheath of the axoneme into the midpiece, and the paracrystalline subacrosomal cone. Sphenomorphus group spermatozoa (e.g. Ctenotus) and the Egernia group (Tiliqua) differ from the more derived Eugongylus group (C. virgatus, L. delicata and C. pectoralis) in that the acrosome is elongate and apically depressed; the perforatorium is strongly oblique; the midpiece is relatively short, with four dense ring structures in longitudinal succession; mitochondria are columnar; and enlarged peripheral fibres 3 and 8 do not show the gross anterior enlargement seen in Carlia and Lampropholis. Heteronotia binoei (Gekkonidae) sperm have no epinuclear electron-lucent region; nuclear shoulders are smooth, as in sphenomorph but not Eugongylus group skinks; mitochondria are columnar; unlike skinks, the median surfaces of the mitochondria are indented by triangular, sometimes longitudinally, interconnected dense bodies. In Lialis burtonis (Pygopodidae) sperm, the perforatorium extends virtually to the tip of the fore-shortened apically domed acrosome; nuclear shoulders are absent; the mitochondria alternate singly or in groups with one or more dense bodies which also form an interrupted collar around the distal centriole. Spermatozoal ultrastructure suggests that a common ancestry of snakes and pygopods deserves consideration.  相似文献   

6.
C. D. James  R. Shine 《Oecologia》2000,125(1):127-141
Because Australian skinks of the genus Ctenotus display very high local species richness in arid-zone spinifex grasslands but not in mesic habitats, these lizards have been used as ”model organisms” to ask why ecologically similar taxa coexist under some circumstances but not others. Previous work has involved detailed studies within small areas, and has looked for differences in ecological processes between arid versus mesic habitats. We suggest a radically different explanation for the high species-richness of arid-zone Ctenotus, by shifting attention to a larger spatial scale: the regional species pool. Analyses of the geographic distributions of Ctenotus species confirm that more species coexist at sites in the arid-zone (mean =9.3 species per site) than in other climatic zones (means 2.4–7.6). However, the total number of species occurring within the arid-zone is actually lower, per km2 of habitat, than is the case in some other climatic zones. That is, arid-zone Ctenotus show a higher local (alpha) species diversity, but a lower regional (gamma) diversity, than their mesic-habitat congeners. This apparent paradox occurs because most arid-zone species occur over vast areas (mean =1,035,000 km2), whereas congeners from other climatic zones have smaller geographic ranges (200–373,000 km2). The broad distributions of arid-zone taxa reflect the great spatial homogeneity in climatic conditions in this zone. That is, the ”climate spaces” occupied are similar for Ctenotus species from all bioclimatic regions. Thus, a given amount of climatic space translates into a larger geographic distribution (and hence, more sympatry) in the arid-zone than in other areas. In summary, the high number of coexisting Ctenotus species in arid-zone habitats may simply reflect the facts that the arid zone is large (so that many species have evolved therein) and climatically homogeneous (so that any species evolving in that habitat type can disperse very widely, and thus overlap with many other species). Our approach explains much of the variance in local-assemblage species richness from regional to site scales; but explanations invoking biological attributes of the species concerned, the nature of their interactions with other species or with particular resources (such as prey or shelter) may still be significant at microhabitat scales. For lizard communities in Australia, species richness at a site may be determined more by continental biogeography rather than by ecological interactions. Received: 28 June 1999 / Accepted: 14 April 2000  相似文献   

7.
Australian scincid lizards in the genus Ctenotus constitute the most diverse vertebrate radiation in Australia. However, the evolutionary processes that have generated this diversity remain elusive, in part because both interspecific phylogenetic relationships and phylogeographic structure within Ctenotus species remain poorly known. Here we use nucleotide sequences from a mitochondrial locus and two nuclear introns to investigate broad-scale phylogeographic patterns within Ctenotus leonhardii and C. quattuordecimlineatus, two geographically widespread species of skinks that were found to have a surprisingly close genetic relationship in a previous molecular phylogenetic study. We demonstrate that the apparent close relationship between these ecologically and phenotypically distinct taxa is attributable to mitochondrial introgression from C. quattuordecimlineatus to C. leonhardii. In the western deserts, Ctenotus leonhardii individuals carry mtDNA lineages that are derived from C. quattuordecimlineatus mtDNA lineages from that geographic region. Coalescent simulations indicate that this pattern is unlikely to have resulted from incomplete lineage sorting, implicating introgressive hybridization as the cause of this regional gene-tree discordance.  相似文献   

8.
An animal's microhabitat requirements can impact its ability to colonize restored areas, particularly species requiring slow developing microhabitats, such as logs and woody debris piles. Introduction of these microhabitats may be required to facilitate colonization by some species. Restored bauxite mine‐pits in the Jarrah (Eucalyptus marginata) forest of south‐western Australia contain introduced log piles at densities of 1 ha?1. However, these have not facilitated colonization by Napoleon's skink (Egernia napoleonis), which rely on logs for habitat and are largely absent from restored sites. We radio‐tracked 12 skinks in unmined forest to determine their microhabitat preferences and examined differences in vegetation structure, and microhabitat and food availability, between restored and unmined forests to identify reasons for their absence. Restored and unmined forests differed in canopy, mid‐ and understory cover and ground substrates, which were all potential barriers to colonization. Food availability was similar between restored and unmined forest, thus not a barrier to colonization. Skinks primarily utilized long logs, large woody debris piles, and large trees; microhabitats that were scarce or absent in restored sites and, therefore, potential barriers to colonization. Using this information, we introduced small woody debris piles into restored sites in close proximity to unmined areas containing skinks to facilitate skink colonization. This showed early signs of success and suggested that the lack of logs and woody debris were barriers to colonization. However, further monitoring is required to accurately determine the long‐term value of woody debris piles in facilitating skink colonization.  相似文献   

9.
Abstract Habitat fragmentation due to clearing often results in an increase in edge areas compared with overall remnant size, but there are limited data on the influence of increased edge areas on generalist species. Therefore, the abundance of small (<55 mm) generalist scinid lizards in small woodland remnants of the Cumberland Plain (western Sydney, Australia) was compared. Using pitfall trapping and points of transect survey techniques, three species were encountered: Lampropholis guichenoti, Lampropholis delicata and Cryptoblepharus virgatus. The abundance and diversity of these skinks differed significantly between edge and core areas; fewer individuals were encountered on the edge of the remnants than in core sites. Cryptoblepharus virgatus was only observed in edge sites where L. guichenoti made up the greatest skink abundance. In contrast, L. delicata abundance was greatest at core sites. There was also a significant difference between the edge and core with respect to the size structure of the L. guichenoti population. Larger numbers of subadults were observed in the edge sites, whereas there were significantly fewer adults and juveniles in these areas. Habitat characteristics did not account for the skink distribution observed.  相似文献   

10.
Edge effects are a widespread and ubiquitous ecological phenomenon, yet they remain poorly studied across edges between restored and natural forests. To address this lack of knowledge, we studied vertebrate communities across edges between 3‐year old restored mine‐pits and adjacent unmined forest in the jarrah (Eucalyptus marginata) forest of south‐western Australia. We found that mammal communities showed no edge response but reptile communities did. Overall reptile abundance and Morethia obscura abundance were higher in unmined forest along edges, Egernia napoleonis abundance was lower in unmined forest along edges, while Pogona minor abundance was lower in restored mine‐pits along edges. Predictive models were unable to predict species edge responses, due to the lack of knowledge of the ecology of jarrah forest reptiles, but proved useful in identifying potential ecological mechanisms behind observed edge responses and suggested that potential mechanisms were likely different for each species. Our study is the first to show edge responses in both habitats forming the edge between restored and natural forests, emphasizing the importance of studying both habitats forming the edge. Our results also suggest that, despite being poorly studied, edge responses are common across edges between restored and natural forest and result from a variety of ecological mechanisms. An increased understanding of the ecological mechanisms driving edge responses across edges between restored and natural forests will improve our ability to integrate restored areas into cross‐landscape management and, ultimately, improve our ability to manage landscapes for biodiversity conservation.  相似文献   

11.
Craig D. James 《Oecologia》1991,85(4):553-561
Summary The diets of five syntopic species of Ctenotus were examined over a two-year period on a 60 ha spinifex grassland site in central Australia. The aims of the study were to test predictions that termites were an important part of the food web for syntopic Ctenotus in spinifex grasslands, and to examine seasonal changes in prey use and dietary overlap between the species. Environmental conditions during the first season of the study were dry resulting in generally low invertebrate abundance. In contrast the second season was relatively moist and overall invertebrate abundance was higher than in the first season. Diets of five species of Ctenotus contained a range of terrestrial prey although one species (C. pantherinus) was relatively termite-specialized at all times. Dietary overlap at the ordinal level between the species was generally higher during dry periods when prey abundance was low, and higher for species-pairs that were similar in body size. During the driest period of the study most species of Ctenotus ate a high proportion of termite prey which accounted for the high dietary overlap. However, each species of Ctenotus consumed different genera or foraging guilds of termites. The results suggest that most of these lizards were opportunistic in their selection of prey but that during dry periods when prey are scarce, termites may play a significant role in supporting a high -diversity of Ctenotus.  相似文献   

12.
Partitioning of activity time within ecological communities potentially reduces interspecific competition and increases the number of species that can coexist. We investigated temporal activity in a highly diverse lizard assemblage in the Simpson Desert, central Australia, to determine the degree of partitioning that occurs. Three periods were defined, daytime (sunrise to sunset), early night (sunset to midnight) and late night (midnight to sunrise), and live captures of lizards were tallied for each period during two sampling months (September and November 2007). We also quantified the activity times of potential invertebrate prey and measured ambient temperatures during the different time periods to investigate any associations between these factors and lizard activity. Some 77% of captures of 13 lizard species were made by day, with Ctenotus pantherinus, Egernia inornata (Scincidae) and Nephrurus levis (Gekkonidae) the only species showing extended nocturnal activity. Activity of both species of skink was recorded at temperatures 4°C lower than those for agamid and varanid lizards early in the night, and at temperatures as low as 18–20°C. Surface‐active invertebrates differed in composition between time periods and were less abundant during the late night period in the drier of the two sample months (September), but were distributed equally over time in the other month. Termites were active in subterranean galleries at night in September and mostly by day in November, but available at all times on surface/subsurface baits. We conclude that activity is distributed unevenly within this lizard assemblage, with partitioning facilitated by the ready availability of invertebrate prey and by lizards having relatively broad temperature tolerances that, in some cases, permit opportunistic exploitation of resources beyond usual times of activity.  相似文献   

13.
Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape.  相似文献   

14.
Compared to natural forests, coarse woody debris (CWD) is typically scarce in restored forests due to the long time it takes to develop naturally. In post‐mining restored forests in the Jarrah forest of south western Australia, CWD is returned at densities of one log pile per hectare. We tested the adequacy of these densities for meeting the micro‐habitat requirements of Napoleon's skink (Egernia napoleonis), a species rarely found within restored sites. Home range size and overlap, and micro‐habitat densities used by skinks, were measured by radio‐tracking 12 individuals in natural, unmined forest. Napoleon's skinks had small home ranges (0.08 ± 0.02 ha), based on 8 individuals with sufficient fixes. All skinks overlapped in home ranges, with average overlaps of 43.5 ± 8.6%. Ten of the 12 skinks shared micro‐habitats and 4 shared them simultaneously, which indicates some social tolerance. This will influence as to how many micro‐habitats are required. Micro‐habitats were used at high densities: logs at 49.2 ± 8.8 ha?1 and woody debris piles at 12.4 ± 4.8 ha?1. Based on these densities, it is recommended that CWD is returned to restored forests at densities of 60 ha?1, which should provide sufficient micro‐habitats for multiple skinks. Due to the infeasibility of returning such CWD densities across large areas of restored forest, CWD could be preferentially returned as patches, large enough for numerous home ranges, adjacent to unmined forest, or as corridors between unmined forest. These recommendations for returning micro‐habitats should be tested for effectiveness in encouraging recolonization of restored forest by Napoleon's skink and other species.  相似文献   

15.
A sample of 261 Ctenotus taeniolatus revealed that this species of skink is principally insectivorous, the most common foods being lepidopteran and coleopteran larvae, orthopterans and formicids. The occurrence of these foods in the diet followed seasonal patterns. The prey of adults and juveniles did not differ qualitatively, although adults were capable of eating a greater diversity of prey sizes than juveniles. Lizards used both sit-and-wait and active foraging strategies, with adults and juveniles exhibiting these behaviours in different ratios.  相似文献   

16.
Abstract In Maputaland, South Africa vegetative and microclimatic changes on mined dunes drive the composition of the dung beetle fauna toward convergence with that in natural dune forest on unmined dunes. We assessed the pattern of these changes using a 23‐year vegetational chronosequence on mined dunes, which passes from grassland (approximately 1 year) to open Acacia shrubland thicket to Acacia karroo‐dominated woodland (approximately 9 years). Across this sequence, which represents successional stages in the restoration of dune forest, there was a sequential trend toward convergence in dung beetle species composition in both the entire species complement and, particularly, in shade specialist species. However, species abundance patterns showed a trend toward convergence only in early chronosequence Acacia woodland, followed by a decline in similarity between dung beetle assemblages of older Acacia woodland and unmined natural forest. This trend toward divergence was common both to the entire species complement, which includes widespread taxa, and to species endemic to Maputaland or the east coast. These trends in similarity and dissimilarity between dung beetle assemblages closely parallel the greater physiognomic and microclimatic similarity between early Acacia woodland and natural forest and the relative dissimilarity of older Acacia woodland. In conclusion, although percentage similarities between dung beetle assemblages of approximately 12‐year woodland and natural forests were comparable with those between each natural forest stand, decline in similarity in older woodland stands suggests that lasting convergence in dung beetle species abundance will only be attained once the Acacia woodland is replaced by secondary natural forest.  相似文献   

17.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

18.
Abstract The expansion of urban areas and adjacent farming land into natural landscapes modifies habitats and produces small isolated pockets of native vegetation. This fragmentation of the natural habitat subdivides animal communities, reduces population sizes and increases vulnerability to extinction. In this paper we investigate whether fragmentation decreases lizard species richness, composition, overall abundance and abundance at the species level. Urban remnants consisting of five small (< 10 ha) and four large (> 10 ha) fragments of natural bushland were paired with continuous bushland areas located near Hobart, Tasmania, Australia. These remnants were surveyed six times, using pitfall traps, from November 2001 to March 2002. Lizard species richness and abundance were not significantly influenced by habitat fragmentation or fragment size. Egernia whitii was the only lizard species significantly influenced by fragment size, and was only present in large fragments and continuous bush. Vegetation type and structure as well as environmental variables (geology and aspect) influenced the structure of reptile communities. Lizard species that were able to use a number of different habitat types were found to persist at most sites, irrespective of fragment size. Edge environment did not significantly influence lizard species richness or abundance in remnant areas. Lizard species richness was significantly lower in sites that had a high ratio of exotic to native plant species. Therefore, if remnants continue to be invaded by exotic plants, lizard species that require native plant communities will become increasingly vulnerable to local extinction. Our results suggest that lizard species requiring specialized habitats, such as E. whitii, may persist in large urban remnants rather than small urban remnants because large reserves are more likely to encompass rare habitats, such as rocky outcrops. Habitat heterogeneity, rather than size, may be the key to their persistence.  相似文献   

19.
Abstract Fauna serve a key role in many forest ecological processes. Despite this, few studies have considered long‐term faunal recolonization after mining and rehabilitation of forest ecosystems. In the jarrah forest of southwestern Australia, permanent fauna monitoring sites have been established in bauxite mined areas rehabilitated in 1990 and in a range of representative unmined forest control sites. At each site mammals, birds, reptiles, and ants were surveyed in 1992, 1995, and 1998. The aims of the monitoring were to develop a better understanding of faunal recolonization trends, to produce recommendations for promoting fauna return, and to consider which techniques and fauna groups are best suited for monitoring recolonization. The results showed that successional trends varied between fauna groups. Generalist foraging mammals recolonized rapidly, whereas small predators took longer. Feral mice were initially abundant and then declined. Birds gradually recolonized, and after 8 years bird communities were very similar to those in unmined forest sites. Reptile species took longer, and after 8 years numbers of species remained lower than in unmined forests. Species richness and diversity of ants in 8‐year‐old rehabilitation were comparable with those of unmined forest in some rehabilitated sites but were lower in others. The composition of ant communities was still different from that of unmined sites. Ant species that only use disturbed forest declined rapidly in abundance as rehabilitation aged. The results suggest that although the rates of faunal recolonization will vary, with time most or all mammal, bird, reptile, and ant species should inhabit rehabilitated bauxite mines. The densities of many are likely to be similar to those in unmined forest, but for others it is too early to know whether this will be the case. Techniques for promoting fauna return are discussed. This study demonstrates that no single fauna group is suitable for use as an overall “indicator” of faunal recolonization; different fauna species and groups reflect different aspects of faunal succession.  相似文献   

20.
Rock boulders or ‘bush‐rocks’ provide essential habitat for many organisms and there has been interest in rehabilitating areas denuded of rock with artificial substitutes. We examine whether the density and size of bush rock influences the density of the coppertail skink (Ctenotus taeniolatus). The success of habitat rehabilitation is contingent on dispersal of rock‐dwelling organisms into areas that have been remediated. To gauge the likelihood of this we characterize geneflow of coppertail skinks among discrete patches of rocky habitat associated with ridge tops. We genotyped 154 individuals from seven localities at six microsatellite DNA loci and from a subset of these individuals we obtained sequence data from the mitochondrial ND4 region. Our field survey established that lizard density was positively associated with the availability of suitably sized bush‐rock (P < 0.001), highlighting the importance of maintaining this habitat element, or replacing it where it has been lost. Despite the presence of habitat features that might be presumed as barriers to dispersal for coppertail skinks, such as intervening gullies and dense vegetation, our genetic data demonstrated high levels of geneflow among rocky ridge tops. Levels of partitioning estimated by global FST were significant but low for both microsatellite (FST = 0.020) and mitochondrial data (FST = 0.113). Spatial autocorrelation of genotypic similarity supports our conclusion of regular longer‐distance geneflow, and we infer lower levels of dispersal in juveniles than in adults. This study suggests that dispersal of coppertail skinks can be sufficient to naturally colonize areas of restored habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号