共查询到20条相似文献,搜索用时 0 毫秒
1.
正自从1957年Kinoshita等首次描述谷氨酸棒杆菌(Corynebacterium glutamicum)为谷氨酸产生菌[1]以来,其已成为用于氨基酸生产的主要菌株。目前,全世界每年利用谷氨酸棒杆菌生产约100万t L-谷氨酸用于食品调味剂和约45万t L-赖氨酸用作食品添加剂[2]。通过谷氨酸棒状杆菌发酵获得谷氨酸的发酵水平已较高,通过进一步优化工艺来提高产量具有较大困难[3]。 相似文献
2.
不同溶氧对谷氨酸棒杆菌代谢的影响 总被引:1,自引:0,他引:1
【目的】以谷氨酸棒杆菌为研究对象,分别控制在0、30%、50%3种溶氧水平下进行发酵,分析不同溶氧水平下代谢的变化。【方法】通过检测发酵代谢物中有机酸、氨基酸的含量,以及测定代谢途径中关键酶活性及其编码基因的表达情况来考察不同溶氧水平下物质代谢发生的变化。通过检测胞内还原力和ATP的含量来分析不同溶氧水平对能量代谢产生的影响。【结果】谷氨酸棒杆菌代谢支路受溶氧的影响而发生改变,氨基酸、有机酸的产量也随之改变。特别是在低溶氧(0)情况下,细胞内氧化磷酸化减弱,导致维持生命活动所必需的ATP供应减少,因此细胞通过增强底物水平磷酸化来产生ATP以满足生命活动的需求。在此情况下,胞内NADH得到较多积累,TCA循环代谢流量减小,而转向糖酵解、乙醛酸循环等,并且这个过程伴随多种杂酸包括乳酸、缬氨酸、亮氨酸等的产生,必将影响目的产物的产量。【结论】研究结果对于进一步采取措施优化溶氧的控制策略,提高目的产物的产量具有指导意义。 相似文献
3.
A new adaptive DO (dissolved oxygen) concentration control algorithm considering DO electrode dynamics with response time delay has been developed. A system model with two time-varying parameters was used to relate the DO concentration with two control variables: air flow rate and agitation speed. Parameters of this model were estimated on-line using a regularized constant trace recursive least-squares method. An extended Kalman filter was used to remove the effect of noises from the DO concentration measurements and thus to improve control performance. A discrete one-step ahead control scheme was adopted to determine control actions based on the parameter estimation results. Experimental results showed that the new adaptive DO concentration control algorithm performed better than other algorithms tested, a PID controller and adaptive algorithms without the DO electrode dynamics. 相似文献
4.
This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point. 相似文献
5.
6.
Noorman H 《Biotechnology journal》2011,6(8):934-943
For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated. 相似文献
7.
Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate 总被引:1,自引:0,他引:1
Bäumchen C Knoll A Husemann B Seletzky J Maier B Dietrich C Amoabediny G Büchs J 《Journal of biotechnology》2007,128(4):868-874
The effect of increased dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum was studied with continuous turbidostatic cultures. The carbon sources were either l-lactate or d-glucose. To increase the dissolved carbon dioxide concentration the carbon dioxide partial pressure of the inlet gas stream pCO2,IN was increased stepwise from 0.0003 bar (air) up to 0.79 bar, while the oxygen partial pressure of the inlet gas stream was kept constant at 0.21 bar. For each resulting carbon dioxide partial pressure pCO2 the maximum specific growth rate mu(max) was determined from the feed rate resulting from the turbidostatic control. On d-glucose and pCO2 up to 0.26 bar, mu(max) was mostly constant around 0.58 h(-1). Higher pCO2 led to a slight decrease of mu(max). On l-lactate mu(max) increased gradually with increasing carbon dioxide partial pressures from 0.37 h(-1) under aeration with air to a maximum value of 0.47 h(-1) at a pCO2 of 0.26 bar. At very high pCO2 (0.81 bar) mu(max) decreased down to 0.35 h(-1) independent of the carbon source. 相似文献
8.
9.
Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture 总被引:1,自引:0,他引:1
Oxygen transport is a major limitation in large-scale mammalian cell culture. The effects of the dissolved oxygen concentration (DO; from 0.1 to 100% saturation with air) on Sp2/0-derived mouse hybridomas were investigated using continuous culture. The steady-state concentration of viable cells increased with decreasing DO until a critical dissolved oxygen concentration of 0.5% of air saturation was reached. The cell concentration declined at lower DO because of incomplete glutamine oxidation, and the specific lactate production from glucose increased to offset the reduced energy production from glutamine. Cell viability increased as the DO was decreased; the viability continued to increase even when the DO was reduced below 0.5%. The specific oxygen uptake rate was essentially constant for DO greater than or equal to 10% of air saturation and then decreased with decreasing DO. The P/O ratio (ATP molecules produced per O atom consumed) appears to change from 2 to 3 between 10 and 0.5% DO. The specific ATP production rate calculated using this assumption decreases only slightly with decreasing DO. The optimum DO of 50% for antibody production is different than the optimum (approximately 0.5% DO) for cell growth. 相似文献
10.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process. 相似文献
11.
12.
In the fermentation of Escherichia coli, a ceramic membrane filter was used in conjunction with a fermenter for cell-recycle operation. The metabolic behaviour, especially the acetic acid production and the specific growth rate, under different concentrations of dissolved O was investigated. An unstructured model was constructed, and it was shown that the observed lower cell density under low dissolved O concentrations was accompanied by large acetic aicd production. However, the concentration of acetic acid was not high enough to cause the observed growth inhibition, and inhibition by other metabolites under low O environment is suspected. 相似文献
13.
Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction 总被引:1,自引:0,他引:1
Summary The amino acid producing bacterium Corynebacterium glutamicum accumulated lactate, succinate and acetate under oxygen-limited growth conditions. Significant restructuring of carbon flux through the central metabolic pathways occurred with a notable decrease in pentose pathway flux and the operation of the TCA cycle in a reductive mode. Simultaneous consumption of residual sugar and organic acids took place when oxygen sufficient conditions were restored though amino acids yields were significantly perturbed. 相似文献
14.
Hao N Yan M Zhou H Liu HM Cai P Ouyang PK 《Prikladnaia biokhimiia i mikrobiologiia》2010,46(6):611-616
AmtR, the master regulator of nitrogen control in Corynebacterium glutamicum, plays important roles in nitrogen metabolism. To investigate the influence of AmtR on amino acids production in C. glutamicum ATCC 13032, the amtR deletion strain C. glutamicum Q1 was constructed and cultured in modified CGXII minimal medium for 60 h. The ammonium consumption rates as well as amino acids production of both strains cultured in modified CGXII minimal medium were determined. The amtR deletion in C. glutamicum caused an obvious growth defect in the exponential growth phase, but both strains had the same biomass in the stationary phases. Maybe the less alpha-oxoglutarate was used for the tricarboxylic acid cycle to influence the growth of strains. During 12 h, the rate of ammonium consumption and the concentration of Glu, Pro, Arg and Ser were higher but Asp, Gly, Ile, Leu, Lys were lower in the mutation strain. During 48 h, the Q1 had higher levels of Asp, Lys, Pro, Ala and Val,and lower levels of Glu, Arg, Leu and Ile, compared to the wild. The more Glu was synthesized by the activated GS/GOGAT pathway in Q1, and then the accumulation of relative amino acids (Pro, Arg and Ser) were up-regulated within 12 h growth. After 48 h growth, the amtR deletion obviously influenced accumulation of Ala, Asp and Pro. The amtR deletion could influence the growth and amino acids production, which could be useful to the production of amino acids. 相似文献
15.
16.
Summary During submerged cultivation of L-lysine producing Corynebacterium glutamicum 9366, oxygen limitation caused a three-fold increase in the intracellular pool of L-lysine while its excretion into the medium cased. At the same time, the phospholipid content of cells increased markedly whereas the proportion of oleic acid in the fatty acids of phospholipids decreased. 相似文献
17.
Letek M Fiuza M Ordóñez E Villadangos AF Ramos A Mateos LM Gil JA 《Antonie van Leeuwenhoek》2008,94(1):99-109
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition. 相似文献
18.
Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production 总被引:1,自引:0,他引:1
Aminotransferases (ATs) interacting with L-alanine are the least studied bacterial ATs. Whereas AlaT converts pyruvate to L-alanine in a glutamate-dependent reaction, AvtA is able to convert pyruvate to L-alanine in an L-valine-dependent manner. We show here that the wild type of Corynebacterium glutamicum with a deletion of either of the corresponding genes does not exhibit an explicit growth deficiency. However, a double mutant was auxotrophic for L-alanine, showing that both ATs can provide L-alanine and that they are the only ATs involved. Kinetic studies with isolated enzymes demonstrate that the catalytic efficiency, k(cat)/K(m), of AlaT is higher than 1 order of magnitude in the direction of L-alanine formation (3.5 x 10(4) M(-1) s(-1)), but no preference was apparent for AvtA, suggesting that AlaT is the principal L-alanine-supplying enzyme. This is in line with the cytosolic L-alanine concentration, which is reduced in the exponential growth phase from 95 mM to 18 mM by a deletion of alaT, whereas avtA deletion decreases the L-alanine concentration only to 76 mM. The combined data show that the presence of both ATs has subtle but obvious consequences on balancing intracellular amino acid pools in the wild type. The consequences are more obvious in an L-valine production strain where a high intracellular drain-off of the L-alanine precursor pyruvate prevails. We therefore used deletion of alaT to successfully reduce the contaminating L-alanine in extracellular accumulated L-valine by 80%. 相似文献
19.
As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great
interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three
different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control,
and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark.
Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies
at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control
based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements
in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback
control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater
treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could
be reduced by up to 8–15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration
could be reduced by up to 15–25%. This control strategy can be expected to be accepted by the operating personnel in wastewater
treatment plants. 相似文献