首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of synergy between sediment organic enrichment and lack of night oxygen renewal in the water column on growth and survival of Zostera marina, and how it is reflected in the sulfur parameters in the plants (δ34S, TS and S0) was studied experimentally. An experiment consisting of Z. marina mesocosms with different levels of organic enrichment and water column aeration was established, and the effects on sediment conditions, sulfide invasion and growth and survival of Z. marina were examined over a 4 week period. Shoots growing in Ambient Organic matter-sediments showed signs of sulfide invasion, as TS increased in all plant compartments and δ34S of the plant tissues decreased during the experiment, but neither growth rate nor survival were significantly affected. The lack of night oxygen renewal had no evident effects in non-enriched sediments as porewater sulfide concentrations, AVS- and CRS-pools were not different from the corresponding 24 h aeration treatment. Plant growth rate and survival were neither different from the corresponding 24 h aeration treatment. On the contrary, shoots growing on High Organic matter-sediments suffered a massive sulfide invasion and it was directly correlated to the observed decrease in growth rates. Even though the lack of night oxygen renewal had no evident effects on sediment variables there were, however, strong indications that the different aeration levels affected plant performance, suggesting a lower sulfide oxidation capacity and confirming that low water column oxygen concentrations reduces the defense capacity of the shoots against sulfide invasion.Although δ34S, TS and S0 concentrations together provided a powerful set of indicators to detect the invasion of sulfide in Z. marina shoots, this study enlightens the need for a deeper investigation of sulfide intrusion in seagrasses and the relation between plant sulfur parameters and sediment conditions.  相似文献   

2.
The use of bacteriocin-producing lactic acid bacteria for improved food fermentation processes seems promising. However, lack of fundamental knowledge about the functionality of bacteriocin-producing strains under food fermentation conditions hampers their industrial use. Predictive microbiology or a mathematical estimation of microbial behavior in food ecosystems may help to overcome this problem. In this study, a combined model was developed that was able to estimate, from a given initial situation of temperature, pH, and nutrient availability, the growth and self-inhibition dynamics of a bacteriocin-producing Lactobacillus sakei CTC 494 culture in (modified) MRS broth. Moreover, the drop in pH induced by lactic acid production and the bacteriocin activity toward Listeria as an indicator organism were modeled. Self-inhibition was due to the depletion of nutrients as well as to the production of lactic acid. Lactic acid production resulted in a pH drop, an accumulation of toxic undissociated lactic acid molecules, and a shift in the dissociation degree of the growth-inhibiting buffer components. The model was validated experimentally.  相似文献   

3.
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.  相似文献   

4.
The monitoring and control of bioprocesses is a challenging task. This applies particularly if the actions to the process have to be carried out in real‐time. This work presents a system for on‐line monitoring and control of batch yeast propagation under limiting conditions based on a virtual plant operator, which uses the concept of intelligent control algorithms by means of fuzzy logic theory. Process information is provided on‐line using a sensor array comprising the measurement of OD, operating temperature, pressure, density, dissolved oxygen, and pH value. In this context practical problems arising through on‐line sensing and signal processing are addressed. The preprocessed sensor data are fed to a neural network for on‐line biomass estimation. The root mean squared error of prediction is 4 × 106 cells/mL. The proposed system then triggers temperature and aeration by usage of a temperature dependent metabolic growth model and sensor data. The deviation of the predicted biomass from that of the reference trajectory as modeled by the metabolic growth model and its temporal derivative are used as inputs for the fuzzy temperature controller. The inputs used by the fuzzy aeration controller are the deviation of measured extract from that of the reference trajectory, the predicted cell count, and the dissolved oxygen concentration. The fuzzy‐based expert system allows to provide the desired yeast cell concentration of 100–120 × 106 cells/mL at a minimum residual extract limit of 6.0 g/100 g at the required point of time. Thus, a dynamic adjustment of the propagation process to the overall production schedule is possible in order to produce the required amount of biomass at the right time.  相似文献   

5.
We investigated the effects of aeration on growth and toxicity of the haptophyte Prymnesium parvum in the presence and absence of the algal prey Rhodomonas salina. Batch monocultures of P-limited P. parvum and N and P sufficient R. salina and mixed cultures of the two microalgae were grown with no, low (20) and high (100) ml min−1 aeration for 18 days. Cell growth of P. parvum and R. salina and cell toxicity of P. parvum were studied over the experimental period. The highest specific growth rates of P. parvum were found at low aeration rates. R. salina in monocultures showed typical growth patterns, while R. salina numbers declined rapidly in the mixed cultures. Of the initial cell densities, 98–100% of the R. salina cells were lysed or ingested within 24 h of mixing with P. parvum cells. The maxima P. parvum biomasses were significantly higher in the mixed cultures than in the monocultures. Cell toxicity of P. parvum increased significantly in response to aeration rates and the highest levels were found in the high aeration condition. Availability of prey and resupply of inorganic nutrients decreased P. parvum cell toxicity. Our study suggests that P. parvum is tolerant and is able to grow over a broad range of aeration and associated turbulence effects though low aeration represents an optimal condition for growth. As P. parvum toxicity was higher in the high aeration treatment we suggest that the higher concentrations of oxygen cause more toxins to be produced, as these are oxygen rich compounds. We suggest that oxygenation and turbulence of surface waters caused by mixing may be involved in promoting high toxic P. parvum blooms in shallow lakes and coastal waters.  相似文献   

6.
Suspension cells of Panax ginseng C.A. Meyer were cultivated in 3-L balloon-type bubble bioreactors and the bioreactor with the angle of 90° at the bottom side was optimized. The gaseous composition in plant cell and tissue cultures is regarded as an important factor affecting the plant growth. Gas hold-up was remarkably higher in the bioreactor with an angle of 90° than the other ones. Aeration rates impacted on the growth ratio, the specific O2 uptake rate (SOUR) of ginseng cells were investigated. 0.4 vvm was selected as the optimal aeration rate with a dry weight of 6.45 g L?1. The specific O2 uptake rate in the culture time was detected and reached the top value at the maximum growth ratio.  相似文献   

7.
This study was aimed at investigating the growth and nutrient uptake of cucumber plants affected by forced aeration of supplying oxygen and stimulating gas exchange rate in root zone in a substrate. Five aeration levels during the growth (0, 0.5, 1.0, 1.5 and 2.0 L/min) were applied. Maximum leaf area and leaf fresh and dry weights were obtained at an aeration level of 0.5 L/min. Excessive aeration in root zone inhibited leaf area expansion, relative leaf growth rate and crop growth rate. An optimum leaf area index of 3.0 to 3.5 was estimated in range of 0 and 0.5 L/min. The highest fruit yield was measured of 1.13 kg/plant at 0.5 L/min, whereas at 2.0 L/min it was 0.62 kg/plant. Potassium concentration in petiole sap was lower at 63 days after transplanting than that at 32 days after transplanting. Ethylene concentrations increased with higher aeration values, however, CO2 concentration reduced with increased aeration. All bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power and cupric reducing antioxidant capacity in ethanol extracts of cucumbers differed significantly in the investigated samples and were the highest at aeration level of 0.5 L/min in comparison with other samples (P <0.05). In conclusion, antioxidant status (bioactive compounds and antioxidant activities) improved with the appropriate aeration, which is effective for higher fruit yield and bioactivity. Excessive aeration inhibited root respiration, nutrients, bioactivity, and water uptake, and it resulted in the reduction of plant growth and fruit yield.  相似文献   

8.
The spatial distribution of microbial communities has recently been reliably documented in the form of a distance–similarity decay relationship. In contrast, temporal scaling, the pattern defined by the microbial similarity–time relationships (STRs), has received far less attention. As a result, it is unclear whether the spatial and temporal variations of microbial communities share a similar power law. In this study, we applied the 454 pyrosequencing technique to investigate temporal scaling in patterns of bacterioplankton community dynamics during the process of shrimp culture. Our results showed that the similarities decreased significantly (P?=?0.002) with time during the period over which the bacterioplankton community was monitored, with a scaling exponent of w?=?0.400. However, the diversities did not change dramatically. The community dynamics followed a gradual process of succession relative to the parent communities, with greater similarities between samples from consecutive sampling points. In particular, the variations of the bacterial communities from different ponds shared similar successional trajectories, suggesting that bacterial temporal dynamics are predictable to a certain extent. Changes in bacterial community structure were significantly correlated with the combination of Chl a, TN, PO4 3-, and the C/N ratio. In this study, we identified predictable patterns in the temporal dynamics of bacterioplankton community structure, demonstrating that the STR of the bacterial community mirrors the spatial distance–similarity decay model.  相似文献   

9.
The effects of agitation and aeration upon synthesis and molecular weight of the biopolymer gellan were systematically investigated in batch fermenter cultures of the bacterium, Sphingomonas paucimobilis. High aeration rates and vigorous agitation enhanced growth of S. paucimobilis. Although gellan formation occurred mainly in parallel with cell growth, the increase in cells able to synthesise gellan did not always lead to high gellan production. For example, at very high agitation rates (1000 rpm) growth was stimulated at the expense of biopolymer synthesis.Maximal gellan concentration was obtained at 500 rpm agitation and either 1 or 2 vvm aeration (12.3 and 12.4 g/l gellan, respectively). An increase in aeration (from 1 to 2 vvm) enhanced gellan synthesis only at low agitation rates (250 rpm). However, high aeration or dissolved oxygen was not necessary for high gellan synthesis, in fact oxygen limitation always preceded the phase of maximum gellan production and probably enhanced polysaccharide biosynthesis.Some gellan was formed even after glucose exhaustion. This was attributed to the intracellular accumulation of polyhydroxyalkanoates, (such as polyxydroxybutyrate) which were found in S. paucimobilis cells indicating the existence of a carbon storage system, which may contribute to gellan biosynthesis under glucose-limiting conditions.The autolysis of the culture, which occurred at the late stages of the process, seemed to be triggered mainly by limitations in mass (nutrient) transfer, due to the highly viscous process fluid that gradually develops. Rheological measurements generally gave a very good near real time estimate of maximum biopolymer concentration offering the possibility of improved process control relative to time consuming gravimetric assay methods.While mechanical depolymerisation of gellan did not occur, high aeration rates (2 vvm) led to production of gellan of low molecular weight (at either 250 or 500 rpm). This effect of aeration rate upon gellan molecular weight is reported here for the first time, and is important for the properties and applications of gellan. Mechanisms which may have led to this are discussed, but control of molecular weight of the biopolymers is clearly an area needing further research.  相似文献   

10.
The cell membrane plays a central role in the fitness and performance of microbial cell factories and therefore it is an attractive engineering target. The goal of this work is to develop a systematic framework for identifying membrane features for use as engineering targets. The metrics that describe the composition of the membrane can be visualized as “knobs” that modulate various “outcomes”, such as physical properties of the membrane and metabolic activity in the form of growth and productivity, with these relationships varying depending on the condition. We generated a set of strains with altered membrane lipid composition via expression of des, fabA and fabB and performed a rigorous characterization of these knobs and outcomes across several individual inhibitory conditions. Here, the knobs are the relative abundance of unsaturated lipids and lipids containing cyclic rings; the average lipid length, and the ratio of linear and non-linear lipids (L/nL ratio). The outcomes are membrane permeability, hydrophobicity, fluidity, and specific growth rate. This characterization identified significant correlations between knobs and outcomes that were specific to individual inhibitors, but also were significant across all tested conditions. For example, across all conditions, the L/nL ratio is positively correlated with the cell surface hydrophobicity, and the average lipid length is positively correlated with specific growth rate. A subsequent analysis of the data with the individual inhibitors identified pairs of lipid metrics and membrane properties that were predicted to impact cell growth in seven modeled scenarios with two or more inhibitors. The L/nL ratio and the membrane hydrophobicity were predicted to impact cell growth with the highest frequency. We experimentally validated this prediction in the combined condition of 42 °C, 2.5 mM furfural and 2% v/v ethanol in minimal media. Membrane hydrophobicity was confirmed to be a significant predictor of ethanol production. This work demonstrates that membrane physical properties can be used to predict the performance of biocatalysts in single and multiple inhibitory conditions, and possibly as an engineering target. In this manner, membrane properties can possibly be used as screening or selection metrics for library- or evolution-based strain engineering.  相似文献   

11.
12.
In this study, we investigated the effects of aeration on ethanol inhibition and glycerol production during fed-batch ethanol fermentation. When aeration was conducted at 0.13, 0.33, and 0.8 vvm, the ethanol productivity, specific ethanol production rate, and ethanol yield in the presence of greater than 100 g/L of ethanol were higher than when aeration was not conducted. In addition, estimation of the parameters (α and β) in a model equation of ethanol inhibition kinetics indicated that aeration alleviated ethanol inhibition against the specific growth rate and the specific ethanol production rate. Specifically, when aeration was conducted, the glycerol yield and specific glycerol production rate decreased approximately 50 and 70%, respectively. Finally, the results of this study indicated that aeration during fed-batch ethanol fermentation may improve the ethanol concentration in the final culture broth, as well as the ethanol productivity.  相似文献   

13.
Pseudomonas aeruginosa F722 produces a biosurfactant (BS) during its degradation of carbon and hydrocarbon compounds. The culture conditions for upgrading the biosurfactant productivity were investigated. The concentration of the biosurfactant produced byP. aeruginosa F722 was 0.78 g/L in C-medium; however, this increased to 1.66 g/L in BS medium, which was experimentally adjusted to optimal conditions. NaNO2 was found to be most effective for microbial growth, with an O.D600nm of 1.18 for 0.1% NaNO2. Microbial growths, according to the O.D600nm were 2.53, 2.68, 2.89, and 2.87 for glucose, glycerol,n-C10, andn-C22, respectively. Clear zone diameters (cm), indicating biosurfactant activity, were 9.0, 8.8, 5.7, and 8.5 for glucose, glycerol,n-C10, andn-C22, respectively. Microbial growth was not consistent with the biosurfactant activity. The best biosurfactant activity was found with a C/N ratio of 20. Under optimal culture condition, the average surface tension decreased from 70 to 30 mN/m after 5 days. With aeration of 1.0 vvm, the biosurfactant produced increased to 1.94 g/L (up to 20%) compared to that of 1.66 g/L with no aeration. With aeration, the velocities of glucose degradation during both the log and stationary growth phases increased from 0.25 and 0.18 h−1 to 0.33 and 0.29 h−1, respectively, and the time for the culture to arrive at the maximum clear zone diameter became shorter, from 80 down to 60 h with no aeration.  相似文献   

14.
We present a spatially explicit individual-based model of rodent dynamics, customized for the prairie vole species, Microtus ochrogaster. The model strives to represent the complexity of intertwining factors that determine the spatio-temporal dynamics of small rodents. It is based on trophic relationships and incorporates important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in the literature. The model is used to study the relation between persistence, landscape area and predation. We use the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for “small” and decreasing for “large” predation levels.  相似文献   

15.
Papadopoulos A 《PloS one》2011,6(9):e25267

Background

In the absence of stochasticity, allometric growth throughout ontogeny is axiomatically described by the logarithm-transformed power-law model, , where and are the logarithmic sizes of two traits at any given time t. Realistically, however, stochasticity is an inherent property of ontogenetic allometry. Due to the inherent stochasticity in both and , the ontogenetic allometry coefficients, and k, can vary with t and have intricate temporal distributions that are governed by the central and mixed moments of the random ontogenetic growth functions, and . Unfortunately, there is no probabilistic model for analyzing these informative ontogenetic statistical moments.

Methodology/Principal Findings

This study treats and as correlated stochastic processes to formulate the exact probabilistic version of each of the ontogenetic allometry coefficients. In particular, the statistical dynamics of relative growth is addressed by analyzing the allometric growth factors that affect the temporal distribution of the probabilistic version of the relative growth rate, , where is the expected value of the ratio of stochastic to stochastic , and and are the numerator and the denominator of , respectively. These allometric growth factors, which provide important insight into ontogenetic allometry but appear only when stochasticity is introduced, describe the central and mixed moments of and as differentiable real-valued functions of t.

Conclusions/Significance

Failure to account for the inherent stochasticity in both and leads not only to the miscalculation of k, but also to the omission of all of the informative ontogenetic statistical moments that affect the size of traits and the timing and rate of development of traits. Furthermore, even though the stochastic process and the stochastic process are linearly related, k can vary with t.  相似文献   

16.
In this paper, changes in physico-chemical parameters during trimmings residue composting (cation exchange capacity, germination index, self-heated, NH4/NO3 ratio and CFA/CHA ratio) in relation to environmental composting parameters (time, aeration, moisture and particle size) of the composting process were studied. A central composite experimental design was used to obtain the polynomial model for each dependent variable. Results of the modelling showed that among the studied range, moisture was the highest influenced parameter in maturity evaluation, with respect to aeration and particle size. An exception was found for CEC evolution. In this parameter, the highest influence was found for particle size. Moreover, a product with acceptable chemical properties entails operating at medium moisture content (55%) and medium-to-high particle size (3–5 cm). Moderate to low aeration (0.2 m3 air kg−1 d−1) would be the best compromise to composting this residue, due to the scarce statistical influence of this independent variable.  相似文献   

17.
Evolutionary operation (EVOP) was used to experimentally investigate the optimum steady state operating conditions for a step aeration activated sludge waste treatment process. A laboratory scale two tank step aeration activated sludge unit with fixed total volume, total influent flow rate, recycle flow rate, and sludge wasting rate was employed. The volume ratio and flow rate ratio which minimized effluent chemical oxygen demand were determined. The results indicate that EVOP is a useful technique for improving the performance of biological processes.  相似文献   

18.
植被生长与气候存在着不对称的时间关系, 考虑气候因子对植被生长的时间效应可为准确理解植被与气候关系、预测植被对全球气候变化的动态响应提供重要科学依据。该研究基于MODIS归一化植被指数(NDVI)、气候以及植被类型数据, 通过构建气候与植被NDVI之间的4种时间效应方程, 揭示了气候因子对青藏高原植被生长的时间效应以及影响植被生长的主导因子。在4种时间效应中, 同时考虑气候滞后和累加效应对植被生长的解释度最高(47%), 相比于不考虑时间效应, 其解释度可整体提高4%-18%; 同时考虑气候滞后和累加效应时, 青藏高原有超过43%的区域受时间滞后与累加联合效应的影响, 只受时间累加效应或滞后效应影响的区域面积次之, 而不受时间效应影响的区域面积最小; 青藏高原NDVI与降水的偏相关性整体上高于其与气温的偏相关性, 其中降水占主导地位的区域主要分布在青藏高原东北部和西南部, 面积占比约为40.1%, 而气温占主导地位的区域集中在青藏高原中部和东南部, 面积占比约为29.7%。  相似文献   

19.
A system for the aeration of cultures growing in a polythermostat temperature-gradient block was developed. This system provided both aeration and agitation of the cultures, while allowing the growth to be followed spectrophotometrically. The necessity for aeration of cultures growing in a polythermostat was experimentally shown.  相似文献   

20.
This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification–denitrification (PND), “DO elbow” point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号