首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sialoglycoprotein with an approx. mol.wt. of 95000 was isolated from human lymphoblastoid cells of a MOLT-4B cell line, which was of human T-lymphocyte origin, by ion-exchange chromatography, affinity chromatography on a column of wheat-germ agglutinin-Sepharose and preparative slab-gel electrophoresis. The localization of this glycoprotein on the cell surface was indicated by surface labelling by the periodate/NaB3H4 and lactoperoxidase-catalysed iodination methods. Carbohydrate analyses of this glycoprotein revealed that its total carbohydrate content is 28% (w/w), and it contains fucose, galactose, mannose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid in molar proportions 1.0:4.0:3.7:3.5:1.2:2.5, suggesting that it has two types of sugar chain, i.e. sugar chains like those of serum glycoproteins and sugar chains of the type found in mucins. Actually, alkaline borohydride treatment of this glycoprotein yielded tri- and tetra-saccharide, the latter containing 1 molecule of fucose in addition to each molecule of galactose, N-acetylgalactosamine and sialic acid. This glycoprotein bound to Ricinus communis agglutinin and concanavalin A as well as to wheat-germ agglutinin.  相似文献   

2.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

3.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

4.
Oligosaccharide structures of human colonic mucin   总被引:19,自引:0,他引:19  
Purified human colonic mucin was separated into six distinct components by DEAE-cellulose chromatography, and the structures of oligosaccharide side chains from the three most abundant species were determined. Oligosaccharide side chains were isolated from colonic mucin species III, IV, and V after alkaline borohydride reductive cleavage in the presence of sodium borotritide. After initial separation of acidic and neutral oligosaccharides by ion exchange chromatography, individual oligosaccharides were isolated by sequential chromatography on Bio-Gel P-4 and Bio-Gel P-2 resins followed by preparative normal phase high performance liquid chromatography. Composition and structure of individual oligosaccharides were determined by combination of gas chromatography, methylation analysis, and sequential glycosidase digestion. Collectively, 21 discrete oligosaccharide structures were identified in the major human colonic mucin species including 10 acidic oligosaccharides and 11 neutral structures which ranged in size from 2 to 12 sugar residues. Although detailed structures were defined for each oligosaccharide, the majority of the structures identified were variations of a relatively small number of "basic" structures, and several generalizations pertained. First, many oligosaccharides represented variations of a biantennary structure in which branch chains arise in N-acetylglucosaminyl residues linked to C3 and C6 of a galactosyl residue linked in turn to a GlcNAc beta (1-3)GalNAc core; second, non-branched oligosaccharides appeared to be linear chain derivatives of the same core structure; third, all acidic oligosaccharides could be derived from neutral structures present in the mucin species; fourth, sialic acid substitution was limited to few sites and always included substitution in alpha 2-6 linkage to the reducing terminal N-acetylgalactosamine, and finally several structures contained both sialic acid and fucose residues. Individually, mucin species III, IV, and V were found to contain unique mixtures of 13, 14, and 10 oligosaccharide structures, respectively. These data demonstrate that human colonic mucin contain a wide range of oligosaccharides reflecting variations of common core oligosaccharide structures. The major chromatographically defined constituents of normal colonic mucin appear to possess characteristic and distinguishable combinations of oligosaccharide structures. These findings support the concept that colonic mucin contains structurally and functionally distinct subpopulations.  相似文献   

5.
Unique high molecular weight (M.W. 4,000-9,000) sugar chains termed erythroglycan II have been obtained from alkali/sodium borohydride digests of I-active asialoglycoprotein derived from sialoglycoprotein GP-2, which was isolated recently from bovine erythrocyte membranes as Sendai virus receptor (Suzuki, Y. et al. (1983) J. Biochem. 93, 1621-1633; (1984) ibid, 95, 1193-1200). It was found that these sugar chains comprise about 40% of total alkali-labile oligosaccharides of asialo GP-2 and contain endo-beta-galactosidase (Flavobacterium keratolyticus)-resistant highly branched and heterogeneous oligosaccharides of poly-N-acetyllactosamine type which are linked O-glycosidically to the peptide backbone through N-acetylgalactosamine. Erythroglycan II also contains endo-beta-galactosidase-susceptible straight terminal polylactosaminyl side chains. A major oligosaccharide released by the enzyme cochromatographed with Gal beta 1-4GlcNAc beta 1-3Gal. Inhibitory activity of Sendai virus-mediated hemagglutination and the receptor activity for the virus were reduced significantly but not completely by the endo-beta-galactosidase. These results indicate that both linear and branched sialosylpolylactosamine sequences in erythroglycan II are important for the reception of the virus into the target cells.  相似文献   

6.
The receptor for epidermal growth factor (EGF) in the human epidermoid carcinoma cell line A-431 is a glycoprotein of apparent molecular weight = 170,000. During biosynthesis, the receptor is first detected as a precursor of apparent Mr = 160,000. In this report we describe our studies on the structures of the oligosaccharide moieties of the mature receptor and its precursor. A-431 cells were grown in medium containing radioactive sugars and the radiolabeled receptors were purified by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiolabeled glycopeptides were prepared from the purified receptor by proteolysis, and their structures were examined by a variety of techniques. The mature EGF receptor contains both complex-type and high mannose-type Asn-linked oligosaccharides in the approximate ratio of 2 to 1, while the precursor contains only high mannose-type chains. A number of experimental results demonstrate that the mature receptor does not contain oligosaccharides in O-linkage through N-acetylgalactosamine to either serine or threonine. The high mannose-type oligosaccharides in both precursor and mature receptor can be cleaved by endo-beta-N-acetylglucosaminidase H and occur in the mature receptor as Man9GlcNAc2 (6%), Man8GlcNAc2 (49%), Man7GlcNAc2 (25%), and Man6GlcNAc2 (20%), whereas, in the receptor precursor the high mannose chains occur primarily as Man8GlcNAc2 (70%). The complex-type oligosaccharides in the mature receptor are predominantly tri- or tetraantennary species and are unusual in several respects. (i) Many of the chains do not contain sialic acid, while the remaining chains contain 1-2 sialic acid residues. (ii) Half of the [3H] mannose-derived radioactivity was recovered as [3H] fucose and the remaining half as [3H] mannose, indicating that there may be an average of 3 fucose residues/chain. (iii) About one-third of the [3H] glucosamine-derived radioactivity in these glycopeptides was recovered as N-acetylgalactosamine and these residues are all alpha-linked and occur at the nonreducing termini. These data demonstrate that the complex-type Asn-linked oligosaccharides in the EGF receptor from A-431 cells contain sugar residues related to human blood type A. In light of other recent studies, these results suggest that in A-431 cells blood group determinants in surface glycoproteins are contained in Asn-linked but not O-linked oligosaccharides.  相似文献   

7.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

8.
Deglycosylation studies on tracheal mucin glycoproteins   总被引:4,自引:0,他引:4  
Following several model experiments, conditions were developed for optimal deglycosylation of tracheal mucin glycoproteins. Exposure of rigorously dried material to trifluoromethanesulfonic acid at 0 degree C for up to 8 h results in cleavage of essentially all fucose, galactose, and N-acetylglucosamine, about 80% of the N-acetylneuraminic acid (NeuNAc), and a variable amount of N-acetylgalactosamine (GalNAc), the sugar involved in linkage to protein. Residual N-acetylneuraminic acid is sialidase susceptible and apparently in disaccharide units, presumably NeuNAc2----GalNAc. The remaining N-acetylgalactosamine is mostly present as monosaccharides, and a few Gal beta 1----3GalNAc alpha units are also present; both are cleaved by appropriate enzymatic treatment. The saccharide-free proteins obtained from either human or canine mucin glycoproteins have molecular weights of about 100,000 and require chaotropic agents or detergents for effective solubilization.  相似文献   

9.
1. Perchloric acid-soluble glycoprotein fraction (PASF) extracted from human liver metastases (LM) of sigmoid colon carcinoma was chromatographed on a DEAE-cellulose column. The main fraction (DEAE-nonadsorbed fraction) passed through the column was then subjected to Sephacryl S-200 superfine gel filtration and separated into 12 fractions. 2. Among 12 fractions, only both Fractions 3 and 4 were demonstrated to be chemically and immunologically homogeneous glycoproteins, respectively, by a combination of chemical composition analysis, SDS-PAGE and EITB assay using antisera against the DEAE-nonadsorbed fractions of PASFs from human LMs, normal liver (NL) and normal sigmoid colon (NSC). Each of Fractions 3 and 4 reacted with anti-LM serum to give one immuno complex on a nitrocellulose sheet in EITB assay, but did not react with anti-NL and -NSC sera. 3. Apparent molecular weights of 80,900 and 62,100, respectively, were found for Fractions 3 and 4. Both the fractions, respectively, had abnormal sugar compositions. Fraction 3 contained sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine, but lacked glucose and mannose, and Fraction 4 contained sialic acid, fucose, galactose and N-acetylglucosamine, but lacked glucose, mannose and N-acetylgalactosamine, as sugar components.  相似文献   

10.
Band-3 glycoprotein was purified from human blood-group-A erythrocyte membranes by selective solubilization and gel chromatography on Sepharose 6B in the presence of sodium dodecyl sulphate. The purified glycoprotein was subjected to hydrazinolysis in order to release the carbohydrate moiety. The released oligosaccharides were N-acetylated and applied to a column of DEAE-cellulose. Most of the band-3 oligosaccharides obtained were found to be free of sialic acids. When this neutral fraction was subjected to gel chromatography on a column of Sephadex G-50, two broad peaks were observed indicating that the band-3 glycoprotein was heterogeneous in the size of the oligosaccharide moieties. All fractions from gel chromatography were found to contain galactose, mannose, N-acetylglucosamine and fucose. The higher-molecular-weight (mol.wt. 3000-8000) peak consisted of fucose, mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine in a molar proportion of 1.6:3.0:8.4:10.5:0.2. Most of these oligosaccharides were digested with a mixture of beta-galactosidase and beta-N-acetylhexosaminidase after alpha-L-fucosidase treatment to give a small oligosaccharide with the structure alpha Man2-beta Man-beta GlcNAc-GlcNAc. Methylation studies and limited degradation by nitrous acid deamination showed that the oligosaccharides contained the repeating disaccharide Gal beta 1----4GlcNAc beta 1----3, with branching points at C-6 of some of the galactose residues. These results indicate that a major portion of the band-3 oligosaccharide has a common core structure, with heterogeneity in the numbers of the repeating disaccharides, and contains fucose residues both in the peripheral portion and in the core portion. Haemagglutination tests were also carried out to determine the blood-group specificities of the glycoprotein and the results demonstrated the presence of both blood-group-H and I antigenic activities.  相似文献   

11.
A beta-N-acetylgalactosaminyltransferase that preferentially transferred N-acetylgalactosamine to Sd(a-) Tamm-Horsfall glycoprotein was found in guinea-pig kidney microsomal preparations. This enzyme was kidney-specific and was able to transfer the sugar to other glycoproteins, such as fetuin and alpha 1-acidic glycoprotein. The presence of sialic acid in the acceptors was essential for the transferase activity when either glycoproteins or their Pronase glycopeptides were used as acceptors. Two glycopeptides (Tamm-Horsfall glycopeptides I and II) with a different carbohydrate composition were separated by DEAE-Sephacel chromatography from Pronase-digested Tamm-Horsfall glycoprotein. The amount of N-acetylgalactosamine transferred to glycopeptides by the enzyme correlated with their degree of sialylation. Enzymic digestion of N-[14C]acetylgalactosamine-labelled Tamm-Horsfall glycopeptide II showed that the transferred sugar was susceptible to beta-N-hexosaminidase. The amount of sugar cleaved by beta-hexosaminidase was strongly increased when the labelled Tamm-Horsfall glycopeptide II was pretreated with mild acid hydrolysis, a procedure that removed the sialic acid residues. Alkaline borohydride treatment of the labelled Tamm-Horsfall glycopeptide II did not release radioactivity, thus indicating that enzymic glycosylation took place at the N-asparagine-linked oligosaccharide units of Tamm-Horsfall glycoprotein.  相似文献   

12.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

13.
The 500 MHz proton-n.m.r. spectra of 21 oligosaccharides, predominantly of the lacto-N and lacto-N-neo series and their derivatives containing non-reducing terminal fucose, sialic acid or N-acetylgalactosamine and reduced-end hexitol or hexosaminitol, were examined with 2H2O as solvent. The chemical-shift data obtained from analysis of the spectra were collated with data from other laboratories who have used 250-500 MHz n.m.r. in the analysis of secreted and chemically synthesized oligosaccharides and of the O- and N-linked chains of glycoproteins. A referenced computer library was constructed that includes the chemical shifts of monosaccharides within oligosaccharide sequences that make up the majority of the carbohydrate structures found in mammalian glycoproteins. Examples are given of the computerized interrogation of this library for the assignment of possible structures of unknown oligosaccharides.  相似文献   

14.
The effect of carbohydrate removal on the viscosity of gastric mucin and its ability to impede the diffusion of hydrogen ion was investigated. The mucin, purified from dog gastric mucus, was subjected to partial or extensive deglycosylation with specific exoglycosidases and then used in the measurements. The obtained results revealed that removal of peripheral fucose or N-acetylglucosamine caused in each case only about 5% reduction of the glyco-protein viscosity. An 18% drop in the viscosity, however, occurred following removal of sialic acid, while extensive deglycosylation (removal of 86% carbohydrate) reduced the glycoprotein viscosity by 40%. The ability of mucin to retard the diffusion of hydrogen ion increased by 7% following removal of fucose or N-acetylgalactosamine, a 28% increase was obtained following removal of sialic acid, while the permeability to hydrogen ion of the extensively deglycosylated glycoprotein decreased by 42%. The results suggest that carbohydrates contribute significantly to the viscoelastic and permselective properties of gastric mucin.  相似文献   

15.
The carbohydrate content of Sindbis virus was determined by gas chromatographic analysis. The two viral glycoproteins were found to be approximately 8% carbohydrate by weight. Mannose is the sugar present in the largest amount. Smaller amounts of glucosamine, galactose, sialic acid, and fucose were also detected. Each of the two viral glycoproteins appears to contain two structurally unrelated oligosaccharides. Two of the three Sindbis-specific glycoproteins found in infected chick cells were shown to contain short, unfinished oligosaccharides.  相似文献   

16.
Glycoconjugate-bound fucose, abundant in the parasite Schistosoma mansoni, has been found in the form of Fucalpha1,3GlcNAc, Fucalpha1,2Fuc, Fucalpha1,6GlcNAc, and perhaps Fucalpha1,4GlcNAc linkages. Here we quantify fucosyltransferase activities in three developmental stages of S. mansoni. Assays were performed using fluorophore-assisted carbohydrate electrophoresis with detection of radioactive fucose incorporation from GDP-[(14)C]-fucose into structurally defined acceptors. The total fucosyltransferase-specific activity in egg extracts was 50-fold higher than that in the other life stages tested (cercaria and adult worms). A fucosyltransferase was detected that transferred fucose to type-2 oligosaccharides (Galbeta1,4GlcNAc-R), both sialylated (with the sialic acid attached to the terminal Gal by alpha2,3 or 2,6 linkage) and nonsialylated. Another fucosyltransferase was identified that transferred fucose to lactose-based and type-2 fucosylated oligosaccharides, such as LNFIII (Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,3Galbeta1,4Glc). A low level of fucosyltransferase that transfers fucose to no-sialylated type-1 oligosaccharides (Galbeta1,3GlcNAc-R) was also detected. These studies revealed multifucosylated products of the reactions. In addition, the effects of fucose-type iminosugars inhibitors were tested on schistosome fucosyltransferases. A new fucose-type 1-N-iminosugar was four- to sixfold more potent as an inhibitor of schistosome fucosyltransferases in vitro than was deoxyfuconojirimycin. In vivo, this novel 1-iminosugar blocked the expression of a fucosylated epitope (mAb 128C3/3 antigen) that is associated with the pathogenesis of schistosomiasis.  相似文献   

17.
Apolipoprotein H is a single chain polypeptide composed of 326 amino acids highly glycosylated. Its carbohydrate content is approximately 19% of the molecular weight. We show that it is rich in sialic acid linked alpha (2-6) to galactose or N-acetylgalactosamine. Sialic acid is not alpha (2-3) linked to galactose. Galactose is beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to N-acetylgalactosamine. Carbohydrate O-linked chains (mainly sialic acid) are alpha (2-6) linked to galactose or N-acetylgalactosamine. Galactose is also organised in O-linked chains and beta (1-4) linked to N-acetylglucosamine and beta (1-3) linked to acetylgalactosamine. Concanavalin A lectin was used to isolate two groups of apolipoprotein H molecules bearing biantennary and truncated hybrids and high mannose and hybrid oligosaccharides. Apolipoprotein H fails to bind lysine-Sepharose. Our results thus show that it presents truncated hybrid or hybrid-type carbohydrate chains which bear few unmasked mannose residues as a terminal sugar. Biochemical analysis of carbohydrate structures conducted on single isoforms separated through IEF revealed that no specific carbohydrate complex is bound to a single isoform.  相似文献   

18.
To investigate the molecular basis of the differential ability of human, equine, and guinea pig alpha 2-macroglobulins to inhibit hemagglutination and infectivity of a human influenza virus, A/Memphis/102/72 (H3N2), the structures of oligosaccharides released from the three glycoproteins by hydrazinolysis were analyzed comparatively. Approximately seven to eight sugar chains were released from each subunit of two potent inhibitors (equine and guinea pig alpha 2-macroglobulins) and a weak inhibitor (human alpha 2-macroglobulin). More than 70% of the oligosaccharides contained sialic acids in all three cases. Structural analysis of these sialo-oligosaccharides revealed that all of the three glycoproteins contain biantennary oligosaccharides with one and two sialic acids as major sugar chains (70-80% of total sugar chains). Four percent of the biantennary oligosaccharides from equine sample, 10% of those from guinea pig, and 24% of those from human contain a fucosylated trimannosyl core. No triantennary oligosaccharide was detected in equine alpha 2-macroglobulin. However, human and guinea pig alpha 2-macroglobulins contain both fucosylated and nonfucosylated triantennary oligosaccharides. All sialic acid residues occur as the Sia alpha 2----6Gal group. The one unique feature of the carbohydrate groups of equine and guinea pig alpha 2-macroglobulins was the presence of 4-O-Ac-Neu5Ac as 30-50% of the total sialic acids, while human alpha 2-macroglobulin contained only Neu 5Ac. However, 4-O-Ac-Neu5Ac is not responsible for the potent inhibition of influenza virus infection and hemagglutination as will be described in the accompanying paper.  相似文献   

19.
High-performance liquid chromatography using pellicular quaternary amine-bonded resins was used to separate a variety of neutral, sialylated, and phosphorylated oligosaccharides. At pH 4.6, sialylated compounds were separated according to number of negative charges, sialic acid linkage [alpha(2,3) compared to alpha(2,6)], and position of sialic acid linkage along a linear saccharide chain. At pH 13, the neutral sugar portion of the sialylated chain had a significant effect on the separation, due to oxyanion formation. Specifically, sialylated tetrasaccharides containing the Gal beta(1,3)GlcNAc sequence were retained much more than their Gal beta(1,4)GlcNAc- or Gal-beta(1,4)GalNAc-sialylated counterparts. Linear phosphorylated oligosaccharides could be completely separated according to number of charges and net carbohydrate content. Partial separation of linear-chain positional isomers, differing in either location of Man-6-PO4 in the chain or linkage position of Man or Man-6-PO4, was accomplished. Branched-chain phosphorylated compounds could be completely separated according to which antennae contained the Man-6-PO4. The electrochemical current generated by oxidation of sialylated, phosphorylated, and neutral oligosaccharides was compared to that of a glucose. The relative molar response factors for neutral, sialylated, and phosphorylated oligosaccharides ranged from 0.2 to 3.2. Neutral oligosaccharides gave the following molar responses for each group of structurally related compounds: (1) mono- and disaccharide, 1-1.3; (2) linear tri- and tetrasaccharides, 1.5-2.0; and (3) branched pentasaccharide-nonasaccharides, 2.4-3.1. Response factors for the sialyated compounds were not as consistent and were affected by linkage position of sialic acid. For oligosaccharides of the same size, increasing phosphorylation resulted in a twofold decrease in response factor for each added phosphate group. Therefore, conversion of sialylated and phosphorylated oligosaccharides to their neutral counterparts, using alkaline phosphatase or neuraminidase, respectively, was required for quantitative analysis of oligosaccharide mixtures using electrochemical response. Using this approach, complete separation of the parent neutral structures was obtained, the relative proportions of the neutral species were quantified, and the amount of sialic acid released was easily determined in a neuraminidase digest.  相似文献   

20.
Hamster tracheal epithelial cells growing on type I collagen gel synthesize and secrete high molecular weight glycoconjugates which elute in the void volume upon Sepharose CL-4B column chromatography. The presence of any proteoglycans in this void volume material was ruled out based on both enzymatic analysis and behavior on DEAE-ion exchange chromatography. Based on the incorporation of radioactive precursors, followed by strong acid hydrolysis or neuraminidase digestion, the material was shown to contain sialic acid, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine, and sulfate. Complete susceptibility to papain digestion and reductive beta-elimination suggests that the material consists of O-linked glycoproteins. The identification of N-acetylgalactosaminitol in the beta-eliminated oligosaccharides confirms this notion. The molecular weight of the oligosaccharides following beta-elimination ranges from 4,000 to 15,000. We conclude that the high molecular weight glyconjugates produced by hamster tracheal epithelial cells in primary culture are mucous glycoproteins based on size, sensitivity to alkaline borohydride treatment, and monosaccharide composition. Further characterization of these mucous glycoproteins showed both size and charge microheterogeneity among molecules. Detailed structural analysis of oligosaccharides of these mucous glycoproteins is currently under way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号