首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centromere protein CENP-A is a histone H3-like protein associated specifically with the centromere and represents one of the human autoantigens identified by sera taken from patients with the CREST variant of progressive systemic sclerosis. Injection of whole human autoimmune serum to the centromere into interphase cells disrupts some mitotic events. It has been assumed that this effect is due to CENP-E and CENP-C autoantigens, because of the effects of injecting monospecific sera to those proteins into culture cells. Here we have used an antibody raised against an N-terminal peptide of the human autoantigen CENP-A to determine its function in mitosis and during cell cycle progression. Affinity-purified anti-CENP-A antibodies injected into the nucleus during the early replication stages of the cell cycle caused cells to arrest in interphase before mitosis. These cells showed highly condensed small nuclei, a granular cytoplasm and loss of their division capability. On the other hand, microinjection of nocodazole-blocked HeLa cells in mitosis resulted in the typical punctate staining pattern of CENP-A for centromeres during different stages of mitosis and apparently normal cell division. This was corroborated by time-lapse imaging microscopy analysis of mid-interphase-injected cells, revealing that they undergo mitosis and divide properly. However, a significant delay throughout the progression of mitotic stages was observed. These results suggest that CENP-A is involved predominantly in an essential interphase event at the centromere before mitosis. This may include chromatin assembly at the kinetochore coordinate with late replication of satellite DNA to form an active centromere. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

2.
CENP-A is a component of centromeric chromatin and defines active centromere regions by forming centromere-specific nucleosomes. We have isolated centromeric chromatin containing the CENP-A nucleosome, CENP-B, and CENP-C from HeLa cells using anti-CENP-A and/or anti-CENP-C antibodies and shown that the CENP-A/B/C complex is predominantly formed on alpha-satellite DNA that contains the CENP-B box (alphaI-type array). Mapping of hypersensitive sites for micrococcal nuclease (MNase) digestion indicated that CENP-A nucleosomes were phased on the alphaI-type array as a result of interactions between CENP-B and CENP-B boxes, implying a repetitive configuration for the CENP-B/CENP-A nucleosome complex. Molecular mass analysis by glycerol gradient sedimentation showed that MNase digestion released a CENP-A/B/C chromatin complex of three to four nucleosomes into the soluble fraction, suggesting that CENP-C is a component of the repetitive CENP-B/CENP-A nucleosome complex. Quantitative analysis by immunodepletion of CENP-A nucleosomes showed that most of the CENP-C and approximately half the CENP-B took part in formation of the CENP-A/B/C chromatin complex. A kinetic study of the solubilization of CENPs showed that MNase digestion first released the CENP-A/B/C chromatin complex into the soluble fraction, and later removed CENP-B and CENP-C from the complex. This result suggests that CENP-A nucleosomes form a complex with CENP-B and CENP-C through interaction with DNA. On the basis of these results, we propose that the CENP-A/B/C chromatin complex is selectively formed on the I-type alpha-satellite array and constitutes the prekinetochore in HeLa cells.  相似文献   

3.
The biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, and U5 involves: (a) migration of the snRNA molecules from the nucleus to the cytoplasm; (b) assembly of a group of common proteins (Sm proteins) and their binding to a region on the snRNAs called the Sm-binding site; and (c) translocation of the RNP back to the nucleus. A first prerequisite for understanding the assembly pathway and nuclear transport of the snRNPs in more detail is the knowledge of all the snRNP proteins that play essential roles in these processes. We have recently observed a previously undetected 69- kD protein in 12S U1 snRNPs isolated from HeLa nuclear extracts under non-denaturing conditions that is clearly distinct from the U1-70K protein. The following evidence indicates that the 69-kD protein is a common, rather than a U1-specific, protein, possibly associating with the snRNP core particles by protein-protein interaction. (a) Antibodies raised against the 69-kD protein, which did not cross-react with any of the Sm proteins B'-G, precipitated not only U1 snRNPs, but also the other spliceosomal snRNPs U2, U4/U6 and U5, albeit to a lower extent. (b) U1, U2, and U5 core RNP particles reconstituted in vitro contain the 69-kD protein. (c) Xenopus laevis oocytes contain an immunologically related homologue of the human 69-kD protein. When U1 snRNA as well as a mutant U1 snRNA, that can bind the Sm core proteins but lacks the capacity to bind the U1-specific proteins 70K, A, and C, were injected into Xenopus oocytes to allow assembly in vivo, they were recognized by antibodies specific against the 69-kD protein in the ooplasm and in the nucleus. The 69-kD protein is under-represented, if present at all, in purified 17S U2 and in 25S [U4/U6.U5] tri-snRNPs, isolated from HeLa nuclear extracts. Our results are consistent with the working hypothesis that this protein may either play a role in the cytoplasmic assembly of the core domain of the snRNPs and/or in the nuclear transport of the snRNPs. After transport of the snRNPs into the nucleus, it may dissociate from the particles as for example in the case of the 17S U2 or the 25S [U4/U6.U5] tri-snRNP, which bind more than 10 different snRNP specific proteins each in the nucleus.  相似文献   

4.
Centromeres are chromosomal structures required for equal DNA segregation to daughter cells, comprising specialized nucleosomes containing centromere protein A (CENP-A) histone, which provide the basis for centromeric chromatin assembly. Discovery of centromere protein components is progressing, but knowledge related to their establishment and maintenance remains limited. Previously, using anti-CENP-A native chromatin immunoprecipitation, we isolated the interphase–centromere complex (ICEN). Among ICEN components, subunits of the remodeling and spacing factor (RSF) complex, Rsf-1 and SNF2h proteins, were found. This paper describes the relationship of the RSF complex to centromere structure and function, demonstrating its requirement for maintenance of CENP-A at the centromeric core chromatin in HeLa cells. The RSF complex interacted with CENP-A chromatin in mid-G1. Rsf-1 depletion induced loss of centromeric CENP-A, and purified RSF complex reconstituted and spaced CENP-A nucleosomes in vitro. From these data, we propose the RSF complex as a new factor actively supporting the assembly of CENP-A chromatin.  相似文献   

5.

Introduction

Anti-centromere antibodies (ACA) are useful biomarkers in the diagnosis of systemic sclerosis (SSc). ACA are found in 20 to 40% of SSc patients and, albeit with lower prevalence, in patients with other systemic autoimmune rheumatic diseases. Historically, ACA were detected by indirect immunofluorescence (IIF) on HEp-2 cells and confirmed by immunoassays using recombinant CENP-B. The objective of this study was to evaluate a novel CENP-A peptide ELISA.

Methods

Sera collected from SSc patients (n = 334) and various other diseases (n = 619) and from healthy controls (n = 175) were tested for anti-CENP-A antibodies by the novel CENP-A enzyme linked immunosorbent assay (ELISA). Furthermore, ACA were determined in the disease cohorts by IIF (ImmunoConcepts, Sacramento, CA, USA), CENP-B ELISA (Dr. Fooke), EliA® CENP (Phadia, Freiburg, Germany) and line-immunoassay (LIA, Mikrogen, Neuried, Germany). Serological and clinical associations of anti-CENP-A with other autoantibodies were conducted in one participating centre. Inhibition experiments with either the CENP-A peptide or recombinant CENP-B were carried out to analyse the specificity of anti-CENP-A and -B antibodies.

Results

The CENP-A ELISA results were in good agreement with other ACA detection methods. According to the kappa method, the qualitative agreements were: 0.73 (vs. IIF), 0.81 (vs. LIA), 0.86 (vs. CENP-B ELISA) and 0.97 (vs. EliA® CENP). The quantitative comparison between CENP-A and CENP-B ELISA using 265 samples revealed a correlation value of rho = 0.5 (by Spearman equation). The receiver operating characteristic analysis indicated that the discrimination between SSc patients (n = 131) and various controls (n = 134) was significantly better using the CENP-A as compared to CENP-B ELISA (P < 0.0001). Modified Rodnan skin score was significantly lower in the CENP-A negative group compared to the positive patients (P = 0.013). Inhibition experiments revealed no significant cross reactivity of anti-CENP-A and anti-CENP-B antibodies. Statistically relevant differences for gender ratio (P = 0.0103), specific joint involvement (Jaccoud) (P = 0.0006) and anti-phospholipid syndrome (P = 0.0157) between ACA positive SLE patients and the entire SLE cohort were observed.

Conclusions

Anti-CENP-A antibodies as determined by peptide ELISA represent a sensitive, specific and independent marker for the detection of ACA and are useful biomarkers for the diagnosis of SSc. Our data suggest that anti-CENP-A antibodies are a more specific biomarker for SSc than antibodies to CENP-B. Furthers studies are required to verify these findings.  相似文献   

6.
Structural protein 4.1, first identified as a crucial 80-kD protein in the mature red cell membrane skeleton, is now known to be a diverse family of protein isoforms generated by complex alternative mRNA splicing, variable usage of translation initiation sites, and posttranslational modification. Protein 4.1 epitopes are detected at multiple intracellular sites in nucleated mammalian cells. We report here investigations of protein 4.1 in the nucleus. Reconstructions of optical sections of human diploid fibroblast nuclei using antibodies specific for 80-kD red cell 4.1 and for 4.1 peptides showed 4.1 immunofluorescent signals were intranuclear and distributed throughout the volume of the nucleus. After sequential extractions of cells in situ, 4.1 epitopes were detected in nuclear matrix both by immunofluorescence light microscopy and resinless section immunoelectron microscopy. Western blot analysis of fibroblast nuclear matrix protein fractions, isolated under identical extraction conditions as those for microscopy, revealed several polypeptide bands reactive to multiple 4.1 antibodies against different domains. Epitope-tagged protein 4.1 was detected in fibroblast nuclei after transient transfections using a construct encoding red cell 80-kD 4.1 fused to an epitope tag. Endogenous protein 4.1 epitopes were detected throughout the cell cycle but underwent dynamic spatial rearrangements during cell division. Protein 4.1 was observed in nucleoplasm and centrosomes at interphase, in the mitotic spindle during mitosis, in perichromatin during telophase, as well as in the midbody during cytokinesis. These results suggest that multiple protein 4.1 isoforms may contribute significantly to nuclear architecture and ultimately to nuclear function.  相似文献   

7.
The human centromere proteins A (CENP-A) and B (CENP-B) are the fundamental centromere components of chromosomes. CENP-A is the centromere-specific histone H3 variant, and CENP-B specifically binds a 17-base pair sequence (the CENP-B box), which appears within every other alpha-satellite DNA repeat. In the present study, we demonstrated centromere-specific nucleosome formation in vitro with recombinant proteins, including histones H2A, H2B, H4, CENP-A, and the DNA-binding domain of CENP-B. The CENP-A nucleosome wraps 147 base pairs of the alpha-satellite sequence within its nucleosome core particle, like the canonical H3 nucleosome. Surprisingly, CENP-B binds to nucleosomal DNA when the CENP-B box is wrapped within the nucleosome core particle and induces translational positioning of the nucleosome without affecting its rotational setting. This CENP-B-induced translational positioning only occurs when the CENP-B box sequence is settled in the proper rotational setting with respect to the histone octamer surface. Therefore, CENP-B may be a determinant for translational positioning of the centromere-specific nucleosomes through its binding to the nucleosomal CENP-B box.  相似文献   

8.
Poly(ADP ribose) polymerase (EC 2.4.2.30) was studied using monoclonal antibodies for three different epitopes on the enzyme. The epitopes were mapped in relation to the functional domains of the protein and the inhibitory properties of the antibodies. The intranuclear and interspecies immunoreactivity of the enzyme was also investigated. The epitope of antibody 2 was mapped to the 17 kDa fragment generated by chymotryptic digestion of the C-terminal 54 kDa NAD-binding domain. Antibody 9 binds to the N-terminal 29 kDa fragment of the DNA binding domain and inhibits the enzyme activity by 80%. This antibody was used to purify poly(ADP ribose) polymerase by immunoaffinity chromatography. The third antibody binds to a central 36 kDa fragment that possesses part of the DNA-binding domain and the automodification domain. This antibody increases the enzymatic activity by 30%. An analysis of the species cross-reactivity of the antibodies was carried out by immunoblot analysis of nuclear proteins. Antibody 10 binding was detected in rat FR3T3 cells, Chinese hamster ovary cells (CHO) and epidermoid carcinoma lung human cells (CALU-1). The other two antibodies are specific for the human and bovine enzymes. Western blot analysis showed the association of poly(ADP ribose) polymerase with residual nuclear material obtained after nuclease treatment and high-salt extraction. Immunofluorescence studies with the three different monoclonals demonstrated that accessibility of the epitopes varies in the nucleus.  相似文献   

9.
Centromere-associated protein A (CENP-A), a common autoimmune target in a subset of systemic sclerosis patients, appears to have no role to explain why its corresponding auto-antibodies are more frequently found in the limited than the diffuse form of systemic sclerosis. Therefore, we investigated the fine specificity of anti-CENP-A antibodies as a first step to understanding their role in systemic sclerosis pathology. We focused on the amino-terminal portion of CENP-A spanning amino acids 1 to 17 (Ap1-17), which represents, along with Ap17-30, an immunodominant epitope of the protein. Peptide Ap1-17 was used to purify antibodies from 8 patients with systemic sclerosis. Anti-Ap1-17 antibodies specifically reacted with human CENP-A but did not cross-react with CENP-B or Ap17-30. Panning of a phage display peptide library with anti-Ap1-17 antibodies from 2 patients identified two novel, partially overlapping motifs, <5Rx(st)xKP10> and <9KPxxPxR15> as the result of the alignment of specific phage clone insert sequences. Anti-Ap1-17 IgG from the 8 patients had different reactivities to isolated phage clone insert sequences. Scanning the Swiss-Prot database revealed a large number of different types of proteins containing the two Ap1-17 antigenic motifs. These data show that anti-CENP-A1-17 antibodies are generated independently from anti-CENP-B antibodies and display great heterogeneity in their specificity by recognizing different motifs within that peptide sequence. This finding, along with the widespread interspecies and human tissue distribution of the two motifs, suggests that the number of motif-expressing proteins which can be the potential target of these antibodies is markedly higher than that estimated from the peptide-based epitope spreading model.  相似文献   

10.
11.
Centromeres are the differentiated chromosomal domains that specify the mitotic behavior of chromosomes. To examine the molecular basis for the specification of centromeric chromatin, we have cloned a human cDNA that encodes the 17-kD histone-like centromere antigen, CENP-A. Two domains are evident in the 140 aa CENP-A polypeptide: a unique NH2- terminal domain and a 93-amino acid COOH-terminal domain that shares 62% identity with nucleosomal core protein, histone H3. An epitope tagged derivative of CENP-A was faithfully targeted to centromeres when expressed in a variety of animal cells and this targeting activity was shown to reside in the histone-like COOH-terminal domain of CENP-A. These data clearly indicate that the assembly of centromeres is driven, at least in part, by the incorporation of a novel core histone into centromeric chromatin.  相似文献   

12.
A centromere-specific variant of histone H3, centromere protein A (CENP-A), is a critical determinant of centromeric chromatin, and its location on the chromosome may determine centromere identity. To search for factors that direct CENP-A deposition at a specific chromosomal locus, we took advantage of the observation that CENP-A, when expressed at elevated levels, can get incorporated at ectopic sites on the chromosome, in addition to the centromere. As core histone hypoacetylation and DNA replication timing have been implicated as epigenetic factors that may be important for centromere identity, we hypothesized that the sites of preferential CENP-A deposition will be distinguished by these parameters. We found that, on human dicentric chromosomes, ectopically expressed CENP-A preferentially incorporates at the active centromere only, despite the fact that the levels of histone acetylation and replication timing were indistinguishable at the two centromeres. In CHO cells, ectopically expressed CENP-A is preferentially targeted to some, but not all telomeric regions. Again, these regions could not be distinguished from other telomeres by their acetylation levels or replication timing. Thus histone acetylation and replication timing are not sufficient for specifying the sites of CENP-A deposition and likely for centromere identity.  相似文献   

13.
Identification of centromere proteins in different mammalian cells   总被引:1,自引:0,他引:1  
The characterization of centromeric proteins is facilitated using anti-centromere antibodies present in the sera of patients with the CREST variant of scleroderma. We have employed these sera to determine whether or not those proteins are present in different mammalian species, as well as to study their tissue distribution. Here, we describe the immunofluorescent pattern and the proteins recognized by CREST sera in dividing and resting cells from mouse, rat, swine, hamster, rabbit, and man. In nuclear preparations from cultured cells, thymocytes and spermatozoa from these species, the antigens recognized by CREST sera are proteins of 18 to 20 kDa in all species tested, except in rat. Additionally, two peptides of 80 and 140 kDa were observed in human preparations. In contrast, a 50 kDa peptide is the primary protein detected by the sera in rat nuclei.  相似文献   

14.
The phenomenon of in vitro cellular senescence has been demonstrated in cultured cells derived from humans and various other species. We have previously shown that monoclonal antibodies SEN-1, SEN-2, and SEN-3 react to epitopes on fibronectin that are exposed when human diploid fibroblasts become senescent. We here present results demonstrating that exposure of these epitopes is specific to senescence for a variety of human cells: epidermal keratinocytes, mammary epithelial cells, as well as fibroblasts. Fibronectin from 11 additional species was also analyzed by Western immunoblot for ability to bind the SEN antibodies. SEN-1 bound only human and gorilla fibronectin, whereas SEN-2 and SEN-3 bound fibronectin from those two species as well as the horse, cow, sheep, goat, dog, and chick. None of the antibodies reacted with fibronectin from the rabbit, rat, or mouse. These data indicated a correlation between the ability of the SEN antibodies to bind fibronectin from a particular species and the ability of cells from that species to exhibit a stable senescent phenotype in vitro. Therefore, exposure of this region of fibronectin may be important in the establishment and maintenance of cellular senescence. In addition, the ability of the SEN antibodies to react with fibronectin from a variety of senescent cells emphasizes their usefulness as markers for cellular senescence.  相似文献   

15.
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.  相似文献   

16.
Centromeres contain specialized chromatin that includes the centromere-specific histone H3 variant, spCENP-A/Cnp1. Here we report identification of five fission yeast centromere proteins, Mis14-18. Mis14 is recruited to kinetochores independently of CENP-A, and, conversely, CENP-A does not require Mis14 to associate with centromeres. In contrast, Mis15, Mis16 (strong similarity with human RbAp48 and RbAp46), Mis17, and Mis18 are all part of the CENP-A recruitment pathway. Mis15 and Mis17 form an evolutionarily conserved complex that also includes Mis6. Mis16 and Mis18 form a complex and maintain the deacetylated state of histones specifically in the central core of centromeres. Mis16 and Mis18 are the most upstream factors in kinetochore assembly as they can associate with kinetochores in all kinetochore mutants except for mis18 and mis16, respectively. RNAi knockdown in human cells shows that Mis16 function is conserved as RbAp48 and RbAp46 are both required for localization of human CENP-A.  相似文献   

17.
《The Journal of cell biology》1989,109(6):3199-3211
Cultured human lung fibroblasts produce a large, nonhydrophobic heparan sulfate proteoglycan that accumulates in the extracellular matrix of the monolayer (Heremans, A., J. J. Cassiman, H. Van den Berghe, and G. David. 1988. J. Biol. Chem. 263: 4731-4739). A panel of four monoclonal antibodies, specific for four distinct epitopes on the 400-kD core protein of this extracellular matrix heparan sulfate proteoglycan, detects similar proteoglycans in human epithelial cell cultures. Immunohistochemistry of human tissues with the monoclonal antibodies reveals that these proteoglycans are concentrated at cell-matrix interfaces. Immunogold labeling of ultracryosections of human skin indicates that the proteoglycan epitopes are nonhomogeneously distributed over the width of the basement membrane. Immunochemical investigations and amino acid sequence analysis indicate that the proteoglycan from the fibroblast matrix shares several structural features with the large, low density heparan sulfate proteoglycan isolated from the Engelbreth-Holm-Swarm sarcoma. Thus, both epithelial cell sheets and individual mesenchymal cells accumulate a large heparan sulfate proteoglycan(s) at the interface with the interstitial matrix, where the proteoglycan may adopt a specific topological orientation with respect to this matrix.  相似文献   

18.
The 55-kD protein is a new actin-bundling protein purified from HeLa cells (Yamashiro-Matsumura, S., and F. Matsumura, 1985, J. Biol. Chem., 260:5087-5097). We have prepared monoclonal antibodies against the 55-kD protein and examined its intracellular localization, as well as its spatial relationships with other components of microfilaments in cultured cells by double-label immunofluorescence. The localization of the 55-kD protein is similar to that of actin. The antibody to the 55-kD protein stained strongly both microspikes and stress fibers. The 55-kD protein was found from the basal portions to the extremities of microspikes while alpha-actinin was localized only in the basal portions. In stress fibers, the 55-kD protein was found rather continuously in comparison to the periodic localizations of alpha-actinin and tropomyosin. Although fimbrin is located in microspikes and ruffling membranes, fimbrin is hardly found in stress fibers unlike the 55-kD protein. These observations coupled with the actin-bundling activity of the 55-kD protein imply that the 55-kD protein is involved in the formation of microfilament bundles in both microspikes and stress fibers.  相似文献   

19.
We found serum autoantibodies directed against the proteins binding exclusively to U4/U6 of Sm small nuclear ribonucleoprotein particle (snRNP) in serum from a patient (MaS) with systemic sclerosis. Their specificity, called anti-MaS, is distinct from that of known antibodies against U snRNP. The U4 and U6 small nuclear RNA from a 32P-labeled HeLa cell extract and five proteins with Mr 150,000, 120,000, 80,000, 36,000, and 34,000, in addition to Sm core proteins (B, B', D, E, F, and G) from an [35S] methionine-labeled extract, were immunoprecipitated by anti-MaS in isotonic solution. However, the Sm core proteins and U4 and U6 small nuclear RNA were separated from the protein-A-Sepharose facilitated MaS immunoprecipitate by incubation in a solution containing 500 mM NaCl. In immunoblots, anti-MaS antibodies reacted with one protein of Mr 150,000 from a HeLa cell nuclear extract that was fractionated by SDS-PAGE and transferred to a nitrocellulose sheet. The monospecific immunoaffinity purified antibody eluted from the immunoblot band immunoprecipitated U4 and U6 small nuclear RNA and reblotted the protein with Mr 150,000. These data indicate that anti-MaS antibodies recognize at least one antigenic protein that binds exclusively to the U4/U6 snRNP.  相似文献   

20.
A pool of 10 calmodulin-binding proteins (CBPs) was isolated from Chinese hamster ovary (CHO) cells via calmodulin (CaM)-Sepharose affinity chromatography. One of these ten isolated CBPs with a molecular mass of 52 kD was also found to be present in isolated CHO cell mitotic spindles. Affinity-purified antibodies generated against this pool of isolated CBPs recognize a single 52-kD protein in isolated CHO cell mitotic spindles by immunoblot analysis. Immunofluorescence examination of CHO, 3T3, NRK, PTK-2, and HeLa cells resulted in a distinct pattern of mitotic spindle fluorescence. The localization pattern of this 52-kD CBP directly parallels that of CaM in the spindle apparatus throughout the various stages of mitosis. Interestingly, there was no association of this 52-kD CBP with cytoplasmic microtubules. As is the case with CaM, the localization pattern of the 52-kD CBP in interphase cells is diffuse within the cytoplasm and is not associated with any discrete, cellular structures. This 52-kD CBP appears to represent the first mitotic spindle-specific calmodulin-binding protein identified and represents an initial step toward the ultimate determination of CaM function in the mitotic spindle apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号