首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catheter-delivered intravascular probes are widely used in clinical practice to measure coronary arterial velocity and pressure, but the artefactual effect of the probe on the variables being measured is not well characterised. A coronary artery was simulated with a 180 degrees curved tube 3mm in diameter and the effect of catheters of different diameters was modelled numerically under pulsatile flow conditions. The presence of a catheter increased pressure by 1.3-4.3 mmHg depending on its diameter, and reduced velocity-pressure phase-lag. For an ultrasound sample volume 5mm downstream from the probe tip, the underestimation in velocity measurement attributed to catheter blockage is approximately 15-21% for an average inlet velocity of 0.1m/s. The velocity measurement error is lower at higher mean flow velocity. Accuracy of clinical velocity measurements could be improved by moving the sample volume farther downstream from the probe tip, because the centrifugal pressure gradient intrinsic to the curvature promotes re-development of flow.  相似文献   

2.
A major advantage of flow cytometry is its flexible and open instrument configuration, which is highly suitable for systems integration. This flexibility permits the coupling of auxiliary instrumentation that may offer the measurement of parameters other than those typically measured by this multiparameter measurement technique. On the basis of this advantage, we explore the principle and application of hyperspectral imaging (HSI), which has the potential to be a useful add-on feature to flow cytometry applications. Application of HSI to flow cytometry involves the acquisition of spatial information and rendering it in spectral form. In this work, we describe the development and application of an HSI system which provides both spectral and spatial information. Spectral information was generated by obtaining an entire spectrum of a single sample site within a wavelength region of interest, while spatial information was generated by recording a two-dimensional (2D) image of an area of the sample of interest at one specific wavelength. HSI is a promising additional feature to flow cytometry since it can provide both spatial (image format) and spectral information in addition to the multiparameter information already available from flow cytometry measurements.  相似文献   

3.
脑血流量测量对于脑血管疾病、脑肿瘤诊断和疗效评估具有重要的临床价值。PET是基于正电子示剂技术无创性、精确测量脑血流量的方法,正日益广泛地应用于临床。按照PET测量脑血流量的方法和使用的正电子示踪剂不同,其测量方法分为平衡法、放射自显影法和动力学方法三种。18O-H2O示踪剂PET测量脑血流量被认为测量脑血流方法的"金标准"。随着PET设备分辨率提高、新的图像重建方法使用和PET与MRI图像融合技术不断成熟,18F-FDG首次通过、采用图像衍生动脉输入函数(imagederived arterial input function,IDAIF)替代动脉抽血样精确测量脑血量方法受到广泛重视,有可能逐步取代高成本的18O-H2O测量脑血流量。PET无创、方便和精确测量脑血流量的方法在临床应使用有助于脑血管性疾病、脑肿瘤和脑退行性病变早期诊断、鉴别诊断和个性化医疗。本文介绍PET脑血流量测量原理、方法和临床应用进展。  相似文献   

4.
Neutron activation is an accurate analytic method in which trace quantities of isotopes of interest in a sample are activated and the emitted radiation is measured with high-resolution detection equipment. This study demonstrates the application of neutron activation for the measurement of myocardial perfusion using stable isotopically labeled microspheres. Stable labeled and standard radiolabeled microspheres (15 microm) were coinjected in an in vivo rabbit model of myocardial ischemia and reperfusion. Radiolabeled microspheres were detected with a standard gamma-well counter, and stable labeled microspheres were detected with a high-resolution Ge detection after neutron activation of the myocardial and reference blood samples. Regional myocardial blood flow was calculated from the deposition of radiolabeled and stable labeled microspheres. Both sets of microspheres gave similar measurements of regional myocardial blood flow over a wide range of flow with a high linear correlation (r = 0.95-0.99). Neutron activation is capable of detecting a single microsphere in an intact myocardial sample while providing simultaneous quantitative measurements of multiple isotope labels. This high sensitivity and capability for measuring perfusion in intact tissue are advantages over other techniques, such as optical detection of microspheres. Neutron activation also can provide an effective method for reducing the production of low-level radioactive waste generated from biomedical research. Further applications of neutron activation offer the potential for measuring other stable labeled compounds, such as fatty acids and growth factors, in conjunction with microsphere measured flow, providing the capability for simultaneous measurement of regional metabolism and perfusion.  相似文献   

5.
植物热值的测定   总被引:1,自引:0,他引:1  
植物热值是草原生态系统中能流研究的重要指标,热值测定采用氧弹法,其原理是将定量试样在充氧的弹筒中燃烧,由燃烧后水温的升高计算试样发热量,为了获得准确测定结果,应注意读温准确、试样均匀、选择最佳氧气压力,以及尽量减少对样品的污染。测定结果表明,草原植物的热值随不同植物种,以及同一种植物不同部位和生长发育的阶段而变化。  相似文献   

6.
Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples.  相似文献   

7.
张鸿芳 《植物学报》1989,6(3):190-192
植物热值是草原生态系统中能流研究的重要指标。热值测定采用氧弹法,其原理是将定量试样在充氧的弹筒中燃烧,由燃烧后水温的升高计算试样发热量。为了获得准确测定结果,应注意读温准确、试样均匀、选择最佳氧气压力,以及尽量减少对样品的污染。测定结果表明,草原植物的热值随不同植物种,以及同一种植物不同部位和生长发育的阶段而变化。  相似文献   

8.
The most frequently and conveniently used technique for measurement of coronary blood flow in patients is that of continuous thermodilution applied to coronary sinus flow. A system is described in which a microcomputer is used to sample, analyse, display and store data obtained using this technique.  相似文献   

9.
We have constructed a simple device by which the optimal delay time between optical measurement of a cell and the application of the droplet charging pulse can be determined directly in a flow sorter. The device consists of a stainless steel chamber in which the sorted droplets are collected. In the collection chamber the collected droplets run through a capillary where a continuous fluorescence measurement is made. With a sample of fluorescent particles, the delay time is optimal when the measured fluorescence is maximal. The measuring volume is always filled with the last droplets sorted (about 3,000). With this device, the setting of the delay time can be done in a few seconds without the need for microscopical verification. The fluorescence in the collection chamber is excited and detected via optical fibers using about 10% of the light of the existing laser from the flow cytometer and an extra photomultiplier.  相似文献   

10.
Steen HB 《Cytometry》2002,49(2):70-72
BACKGROUND: The sample injection systems of flow cytometers employ either a pressure differential between the sample vial and the sheath fluid reservoir or volumetric injection of the sample from a syringe. The pressure differential method facilitates rapid and efficient flushing to eliminate carryover between samples, but does not allow accurate determination of the rate of sample flow and cell concentration. Volumetric injection, which comprises a valve for switching the sample flow, facilitates highly accurate measurement of the cell concentration, but requires a less efficient and more time-consuming flushing procedure. METHODS: Applying a removable syringe, which connects to the inlet of the sample tubing via a tight sealing, we eliminate the valve and obtain efficient flushing while maintaining the advantage of volumetric sample injection. RESULTS: This device gives highly constant sample flow rates strictly proportional to syringe velocity over the range 0.2-50 microl/min with a settling time of about 2 sec. CONCLUSION: This device has the same precision as the conventional sample injection system, whereas the speed and efficiency of flushing are improved greatly.  相似文献   

11.
We present a multi-scale experimental approach designed to improve the investigation of both localized and global fluid flow in biomaterials with randomly interconnected porosity. Coralline hydroxyapatite (ProOsteon 500 from Interpore-Cross), having a relatively well-defined porosity, was used as an in vitro model of typical bone architecture. Axial fluid velocity profiles within the pores of a cylindrical hydroxyapatite sample were characterized using high-resolution MRI in conjunction with the measurement of global flow and associated permeability based on the Darcy-type relationship. Assuming Newtonian fluid behaviour, image analysis permitted computation of local porosity, intra-pore fluid shear, and visualization of flow heterogeneity within the sample. These results may benefit applications in biomaterials for the evaluation of factors influencing bony incorporation in porous scaffolds and on porous implant and bone surfaces. Normal and diseased biological tissues are also clinical relevant applications.  相似文献   

12.
We have examined practical considerations associated with the use of a commercially available fluorescence probe for in situ measurements in bioreactors. The optical path length of the measurement was first determined and a flow cell subsequently designed. The environment (agitation/aeration rates) of the probe was found to have a significant influence on the measurement. These effects were eliminated by placing the probe in a recycle loop using the flow cell. Fluorescence measurement in the recycle loop was verified to be representative of the cell sample and to not affect cell metabolism.  相似文献   

13.
Two specially shaped sample injection tubes orient flat-shaped mature sperm heads in a flow cytometer. Orientation allows control of a photometric difficulty experienced with some flow cytometers in the measurement of fluorescent and scattered light from sperm and other flat cells. Both relative DNA-stain content and a measure of cell flatness can now be determined simultaneously for each cell at the high rates possible with flow instruments.  相似文献   

14.
BACKGROUND: Urine contains microscopically observable particles that can indicate certain types of disease in the urinary tract system. Determining these various types of sediments by manual operation is a cumbersome and time-consuming task. To eliminate this labor, we developed an automated urinary sediment analyzer with high-throughput pretreatment system. METHODS: The pretreatment system mainly consists of four reaction vessels for dying samples (urine), a sheath flow chamber, and an unique sample carrier mechanism from the reaction vessel to the flow chamber, which enables overlapped processing, and rapid transfer of samples with small dispersion and a short buildup time. RESULTS: The buildup time was experimentally found to be 1.8 s, and the extra-sample volume beside that for measurement was only 4.9 microl (1/20 of the total sample volume). CONCLUSIONS: Short buildup time results in high throughput of 120 samples per hour, and relatively small extra-volume contributes to reduce carryover.  相似文献   

15.
Melatonin is a hormone, a derivative of tryptophan, that possesses a potent scavenging capacity for the most reactive and dangerous free radicals, being an important protection against oxidative stress. In this work, an automated flow-based procedure for assessment of melatonin, tryptophan, and 5-hydroxytryptophan scavenging capacity was developed. The presented methodology involved a multi-pumping flow system and exploited the ability of selected compounds to inhibit the chemiluminescence reaction of luminol with hydrogen peroxide, hydroxyl radical, and peroxynitrite anion. The system was based on the use of several solenoid actuated micro-pumps as the only active components of the flow manifold. This enabled the reproducible insertion and efficient mixing of very low volumes of sample and reagents as well as the transportation of the sample zone toward detection for monitoring the chemiluminometric response. Furthermore, the high versatility of the proposed multi-pumping flow system allowed the implementation of distinct reactions for the in-line generation of the different reactive species assayed without requiring physical reconfiguration. The results obtained demonstrated that 5-hydroxytryptophan is the most potent scavenger, followed by melatonin and tryptophan. The developed multi-pumping flow system exhibited good measurement precision (relative standard deviations typically <2%, n=10), low operational costs, and low reagent consumption.  相似文献   

16.
A method for the determination of caffeine in coffee and tea samples based on the use of supported liquid membranes coupled to a flow system has been developed. The sample may be analysed both as solid and slurry. In the case of solid sample, this is directly placed in the membrane unit, and when the sample is slurry, this is continuously pumped to the membrane unit. In both cases, the caffeine released from the sample passes through the membrane (PTFE/n-undecane:hexyl ether) into an acidic acceptor stream. This stream flows through a spectrophotometric detector allowing the measurement of the absorbance of caffeine at 274 nm. The method shows a linear range between 0.5 and 15 g l−1, with a relative standard deviation of ±3.7% and a sample throughput of 7–8 samples h−1.  相似文献   

17.
Linear dichroism (LD) can be used to study the alignment of absorbing chromophores within long molecules. In particular, Couette flow LD has been used to good effect in probing ligand binding to DNA and to fibrous proteins. This technique has been previously limited by large sample requirements. Here we report the design and application of a new micro-volume Couette flow cell that significantly enhances the potential applications of flow LD spectroscopy by reducing the sample requirements for flow linear dichroism to 25 microL (with concentrations such that the absorbance maximum of the sample in a 1-cm pathlength cuvette is approximately 1). The micro-volume Couette cell has also enabled the measurement of fluorescence-detected Couette flow linear dichroism. This new technique enables the orientation of fluorescent ligands to be probed even when their electronic transitions overlap with those of the macromolecule and conversely. The potential of flow-oriented fluorescence dichroism and application of the micro-volume Couette LD cell are illustrated by the collection of data for DNA with minor groove and intercalating ligands: DAPI, Hoechst, and ethidium bromide. As with conventional fluorescence, improved sensitivity compared with absorbance LD is to be expected after instrumentation optimization.  相似文献   

18.
A simple method for rapid nanogram measurement of nucleic acids and proteins is described. It requires only 5 to 10 microliter of sample solution which is injected into the postcolumn flow stream of a high-performance liquid chromatograph. Samples are analyzed by uv detection at 260 nm for nucleic acids and 280 nm for proteins with a diode array detector. Analyzing speed is two samples per minute and the amount to be analyzed ranges from 3 ng to 80 micrograms for nucleic acids and 10 ng to 80 micrograms for bovine serum albumin, irrespective of the sample volume. The method is particularly useful for fast, accurate, and trace amount measurement of purified DNA, RNA, and protein samples in small volumes.  相似文献   

19.
The yield of flow cytometric sorted X‐ and Y‐chromosome‐bearing sperm in a given time period is an important factor in the strategies used for fertilization and the production of sex‐preselected offspring. This yield is dependent on the efficiency with which the modified flow cytometer/cell sorter analyzes the DNA of spermatozoa. The efficiency is directly related to the number of sperm with the correct orientation during DNA analysis. Currently, the efficiency of flow cytometric sperm sorting is low since orientation of the sperm head to laser excitation is rate limiting. To overcome this problem, a new nozzle was designed to enhance sperm orientation and tested under flow cytometric sorting conditions. The degree of orientation improvement was determined with different sample rates using viable sperm and dead sperm of several different species. There was at minimum, a two‐fold increase in the proportion of oriented sperm when comparing the new nozzle with the currently used modified flow cytometer/cell sorter employing a beveled needle. More than 60% of intact bull sperm and boar sperm were correctly oriented compared with 25% to 30% using the beveled needle system. A unique characteristic of the novel nozzle was that the proportion of oriented sperm was independent of sample rate and of sperm motility. The accuracy of DNA measurement together with high purity sorting was tested using the novel nozzle. The novel nozzle was unique in that accuracy of measurement and sorting performance were not diminished. Using the new nozzle, samples of 88% purity of sorted X‐sperm and Y‐sperm were obtained for viable bull and boar sperm. The yield of flow cytometric sorted X‐ and Y‐chromosome‐bearing sperm using the novel nozzle was, on average, twice that obtained by using the beveled needle system in conjunction with a standard equipment nozzle for orientation. Mol. Reprod. Dev. 52:50–56, 1999. Published 1999 Wiley‐Liss, Inc.  相似文献   

20.
In this study three flow field-flow fractionation (flow FFF) channels are utilized for the separation of proteins and for the simultaneous measurement of their translational diffusion coefficients, D. One channel has a traditional sample inlet, whereas the other two incorporate a frit inlet design that permits more convenient and rapid sample introduction. The dependence of retention time on D, which leads to differential elution and the opportunity to measure D for protein peaks purified by the flow FFF process, is described theoretically and examined experimentally. Factors affecting band broadening, resolution, and optimization are also examined. The separation of proteins is achieved in the time range 4-20 min. Partial resolution is achieved in multiple runs requiring 2 min each. Values of D calculated from retention times are reported for 15 proteins. These include two protein dimers (bovine serum albumin and gamma-globulin) not ordinarily accessible to measurement. The D values from the three channels are compared with one another and with literature data. Reasonable consistency (within 3-4%) is found. High-speed repetitive runs can be used to acquire multiple values of D in time intervals as short as 1 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号