首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lysosomal proton pump is electrogenic   总被引:11,自引:0,他引:11  
Lysosomes were purified approximately 40-fold from rat kidney cortex by differential and Percoll density gradient centrifugation. In a sucrose medium, the lysosomes quenched the fluorescence of the potential sensitive dye diS-C3-(5) (3,3'-dipropylthiocarbo-cyanine iodide) in a time-dependent manner, indicating that the dye accumulates within the lysosomal interior. After treatment of the lysosomes with valinomycin, the dye fluorescence displayed a logarithmic dependence upon the external K+ concentration; thus, the fluorescence signal provides a semiquantitative measure of the lysosomal membrane potential (delta psi). In the absence of valinomycin, lysosomal quenching of diS-C3-(5) fluorescence was partially reversed by agents which collapse the lysosomal pH gradient (ammonium sulfate, chloroquine, and K nigericin), suggesting that the proton gradient across the lysosomal membrane contributes to delta psi. A rapid increase in diS-C3-(5) fluorescence, indicative of an increase in delta psi, was observed upon the addition of Mg-ATP to the lysosomes. The ATP-dependent fluorescence change was inhibited by protonophores, K valinomycin, permeable anions, and N-ethylmaleimide, but was unaffected by ammonium sulfate, K nigericin, or sodium vanadate. Oligomycin had no effect at concentrations below 2 micrograms/ml; at higher concentrations, oligomycin partially inhibited the fluorescence response to Mg-ATP, but it also inhibited the fluorescence response to K valinomycin, suggesting that it had modified the permeability of the lysosomal membrane. Dicylohexylcarbodiimide behaved similarly to oligomycin. Mg-ATP also altered the lysosomal distribution of 86Rb+ (in the presence of valinomycin) and S[14C]CN-, consistent with an increase in the potential of the lysosomal interior of 40-50 mV. The results demonstrate that the lysosomal proton pump is electrogenic.  相似文献   

2.
Acridine orange as a fluorescent probe for lysosomal proton pump   总被引:7,自引:0,他引:7  
Acridine orange was found to accumulate in pure lysosomal particles (tritosomes) in vitro, and the quenching of its fluorescence correlated well with the delta pH (inside acid) across the lysosomal membrane. Use of this dye showed that Mg-ATP caused lysosomal acidification. This acidification was sensitive to N,N'-dicyclohexylcarbodiimide, N-ethylmaleimide, and azide, but not to oligomycin, ouabain or vanadate. These results supported the idea of the existence of a lysosomal H+-pump, suggested in a previous paper (Ohkuma et al. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2758-2762).  相似文献   

3.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

4.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

5.
The light-dependent uptake of triphenylmethylphosphonium (TPMP+) and of 5,5-dimethyloxazolidine-2,4-dione (DMO) by starved purple cells of Halobacterium halobium was investigated. DMO uptake was used to calculate the pH difference (deltapH) across the membrane, and TPMP+ was used as an index of the electrical potential difference, deltapsi. Under most conditions, both in the light and in the dark, the cells are more alkaline than the medium. In the light at pH 6.6, deltapH amounts to 0.6-0.8 pH unit. Its value can be increased to 1.5-2.0 by either incubating the cells with TPMP+ (10(-3) M) or at low external pH (5.5). --deltapH can be lowered by uncoupler or by nigericin. The TPMP+ uptake by the cells indicates a large deltapsi across the membrane, negative inside. It was estimated that in the light, at pH 6.6, deltapsi might reach a value of about 100 mV and that consequently the electrical equivalent of the proton electrochemical potential difference, deltamuH+/F, amounts under these conditions to about 140 mV. The effects of different ionophores on the light-drive proton extrusion by the cells were in agreement with the effects of these compounds on --deltapH.  相似文献   

6.
《The Journal of cell biology》1984,99(4):1511-1526
Specific antibodies against lysosomal membranes were prepared by using techniques previously described (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol., 92:92-107) for obtaining organelle-specific antibodies. The purified antibodies stained an acidic vacuolar compartment as shown by double-labeling experiments with acridine orange and indirect immunofluorescence. Characterization of the antibodies by immunoreplica methods revealed one major protein of approximately 100,000 mol wt. The antibodies cross-reacted with purified H+,K+ ATPase from pig gastric mucosa, the enzyme responsible for HCl secretion, but not with ATPases transporting other ions. They may therefore recognize a component of the proton pump involved in the acidification of lysosomes. As was expected, secondary lysosomes contained immunoreactive antigen, as determined by the fine-structural localization of reaction product for peroxidase or immunogold probes in several cell types. The antigen was also found in vacuoles containing phagocytosed bacteria in macrophages so it is present in at least some of the compartments of an endocytic pathway. In liver, the antigen was present in small amounts on the plasma membrane and in large amounts in some coated vesicles (near the sinusoidal surface of hepatocytes), putative endosomes, two cisternae on the cis side of the Golgi complex, adjacent vesicles and vacuoles, and pericanalicular dense bodies. In summary, the antigen seems to be present in those compartments that have recently been demonstrated to be acidified by an ATP-driven pump.  相似文献   

7.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

8.
Y Moriyama  M Maeda  M Futai 《FEBS letters》1992,302(1):18-20
Change of the internal pH of isolated lysosomes was measured with fluorescein isothiocyanate-dextran. In buffer of pH 7.0, isolated lysosomes had an acidic pH of about 5.5, which decreased to pH 5.2 on addition of ATP. Addition of bafilomycin inhibited the acidification by H(+)-ATPase and resulted in an increase of the internal pH to 5.5 due to passive diffusion of protons across the lysosomal membrane. However, no further alkalization was observed. The acidic pH (pH 5.5) of isolated lysosomes could be maintained for at least 48 h in the absence of ATP, but increased gradually to pH 5.9-6.4 upon incubation with monovalent cations (K+ or Na+), amines, or ionophores. These results suggest that a non-proton pump factor (possibly Donnan equilibrium) is involved in maintaining the acidic pH of isolated lysosomes.  相似文献   

9.
Distal urinary acidification is thought to be mediated by a proton ATPase (H+-ATPase). We isolated a plasma membrane fraction from human kidney cortex and medulla which contained H+-ATPase activity. In both the cortex and medulla the plasma membrane fraction was enriched in alkaline phosphatase, maltase, Na+,K+-ATPase and devoid of mitochondrial and lysosomal contamination. In the presence of oligomycin (to inhibit mitochondrial ATPase) in the presence of ouabain (to inhibit Na+,K+-ATPase) and in the absence of Ca (to inhibit Ca2+-ATPase) this plasma membrane fraction showed ATPase activity which was sensitive to dicyclohexylcarbodiimide and N-ethylmaleimide. This ATPase activity was also inhibited by vanadate, 4,4'-diisothiocyano-2,2'-disulfonic stilbene and ZnSO4. In the presence of ATP, but not GTP or UTP, the plasma membrane fraction of both cortex and medulla was capable of quenching of acridine orange fluorescence, which could be dissipated by nigericin indicating acidification of the interior of the vesicles. The acidification was not affected by presence of oligomycin or ouabain indicating that it was not due to mitochondrial ATPase or Na+,K+-ATPase, respectively. Dicyclohexylcarbodiimide and N-ethylmaleimide completely abolished the acidification by this plasma membrane fraction. In the presence of valinomycin and an outward-directed K gradient, there was increased quenching of acridine orange, indicating that the H+-ATPase is electrogenic. Acidification was not altered by replacement of Na by K, but was critically dependent on the presence of chloride. In summary, the plasma membrane fraction of the human kidney cortex and medulla contains a H+-ATPase, which is similar to the H+-ATPase described in other species, and we postulate that this H+-ATPase may be involved in urinary acidification.  相似文献   

10.
Lymphocyte membrane potential assessed with fluorescent probes   总被引:33,自引:0,他引:33  
The membrane potential of mouse spleen lymphocytes has been assessed with two fluorescent probes. 3,3'-Dipropylthiadicarbocyanine (diS-C3-(5)) was used for most of the experiments. Solutions with high K+ concentrations depolarised the cells. Valinomycin, an inophore which adds a highly K+-selective permeability membranes, slightly hyperpolarised cells in standard (6 mM K+) solution, and in 145 mM K+ solution produced a slight additional depolarisation. These findings indicate a membrane whose permeability is relatively selective for K+. Very small changes in potential were seen when choline replaced Na+, or gluconate replaced Cl-, supporting the idea of K+ selectivity. The resting potential could be estimated from the K+ concentration gradient at which valinomycin did not change the potential-the "valinomycin null point" - and under the conditions used the resting potential was approx.-60 mV. B cell-enriched suspensions were prepared either from the spleens of nu/nu mice or by selective destruction of T cells in mixed cell populations. The membrane potential of these cells was similar to that estimated for the mixed cells. In solution with no added K+, diS-C3-(5) itself appeared to depolarise the lymphocytes, in a concentration dependent manner. With the 100 nM dye normally used, the membrane potential in K+-free solution was around -45 mV, and 500 nM dye almost completely depolarised the cells. In standard solution quinine depolarised the cells. Valinomycin could still depolarise these cells indicating that depolarisation had not been due to dissipation of the K+ gradient. Since in K+-free solution diS-C3-(5) blocks the Ca2+-activated K+ channels in human red blood cell ghosts and quinine also blocks this K+ channel it is suggested that the resting lymphocyte membrane may have a similar Ca2+-activated K+ permeability channel. Because of the above mentioned effect of diS-C3-(5) and other biological side effects, such as inhibition of B cell capping, a chemically distinct fluorescent probe of membrane potential, bis(1,3-diethylthiobarbiturate)-trimethineoxonol was used to support the diS-C3-(5) data. This new probe proved satisfactory except that it formed complexes with valinomycin, ruling out the use of this ionophore. Results with the oxonol on both mixed lymphocytes and B cell-enriched suspensions gave confirmation of the conclusions from diS-C3-(5) experiments and indicated that despite its biological side effects, diS-C3-(5) could still give valid assessment of membrane potential.  相似文献   

11.
Multivesicular bodies (MVB), prelysosomal organelles in the endocytic pathway, were prepared from estrogen-treated rat livers and examined for the presence of ATP-dependent proton transport. Vesicle acidification, assessed by acridine orange fluorescence quenching, was ATP dependent (ATP much greater than GTP, UTP), was enriched 25-fold over homogenate, was abolished by pretreatment with protonophores or a nonionic detergent, exhibited a pH optimum of 7.5, was inhibited by N-ethylmaleimide (NEM) (IC50 approximately 5 microM) and N,N'-dicyclohexylcarbodiimide (IC50 approximately 5 microM), and was resistant to inhibition by vanadate, ouabain, and oligomycin. Acidification exhibited no specific cation requirement; however, maximal rates of acidification depended upon the presence of Cl- (Km approximately 20 mM). Other anions were less effective in supporting acidification (Cl- greater than Br- greater than much greater than gluconate, NO-3, SO2-4, and mannitol), and indeed NO-3 inhibited acidification even in the presence of 150 mM Cl-. The proton transport mechanism appeared to be electrogenic based on: (a) enhancement of acidification by valinomycin in the presence of K gluconate, and (b) ATP-dependent fluorescence quenching of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol, a membrane potential-sensitive anionic dye. Furthermore, the magnitude of the pH and electrical gradients generated by the proton transport mechanism appeared to vary inversely in the presence and absence of Cl-. Finally, MVB exhibited ATPase activity that was resistant to ouabain and oligomycin, but was inhibited 32.3% by 1 mM NEM, 33.7% by 200 microM dicyclohexylcarbodiimide, and 18.7% by KNO3. In isolated MVB, therefore, the NEM-sensitive ATPase activity may represent the enzymatic equivalent of a proton pump. These studies identify and characterize an ATP-dependent electrogenic proton transport process in rat liver MVB which shares many of the properties of the proton pump described in clathrin-coated vesicles, endosomes, lysosomes, Golgi, and endoplasmic reticulum from liver and other tissues. Acidification of MVB differed somewhat from that of rat liver clathrin-coated vesicles in response to Br- and NO-3, suggesting that membrane properties of these two organelles might differ.  相似文献   

12.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

13.
Membrane potential of Plasmodium-infected erythrocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
The membrane potential (Em) of normal and Plasmodium chabaudi-infected rat erythrocytes was determined from the transmembrane distributions of the lipophilic anion, thiocyanate (SCN), and cation, triphenylmethylphosphonium (TPMP). The SCN- and TPMP-measured Em of normal erythrocytes are -6.5 +/- 3 mV and -10 +/- 4 mV, respectively. The TPMP-measured Em of infected cells depended on parasite developmental stage; "late" stages (schizonts and gametocytes) were characterized by a Em = -35 mV "early stages (ring and copurifying noninfected) by a low Em (-16 mV). The SCN-determined Em of infected cells was -7 mV regardless of parasite stage. Studies with different metabolic inhibitors including antimycin A, a proton ionophore (carbonylcyanide m-chlorophenylhydrazone [CCCP] ), and a H+ -ATPase inhibitor (N,N'-dicyclohexylcarbodiimide, [DCCD] ) indicate that SCN monitors the Em across the erythrocyte membrane of infected and normal cells whereas TPMP accumulation reflects the Em across the plasma membranes of both erythrocyte and parasite. These inhibitor studies also implicated proton fluxes in Em-generation of parasitized cells. Experiments with weak acids and bases to measure intracellular pH further support this proposal. Methylamine distribution and direct pH measurement after saponin lysis of erythrocyte membranes demonstrated an acidic pH for the erythrocyte matrix of infected cells. The transmembrane distributions of weak acids (acetate and 5,5-dimethyloxazolidine-2,4-dione) indicated a DCCD-sensitive alkaline compartment. The combined results suggest that the intraerythrocyte parasite Em and delta pH are in part the consequence of an electrogenic proton pump localized to the parasite plasma membrane.  相似文献   

14.
Lysosomes (tritosomes) were purified from the livers of rats injected with Triton WR 1339. The lysosomes developed an Mg2+-ATP-dependent pH gradient as measured by Acridine orange accumulation. H+ transport was supported by chloride, but not sulfate, and was independent of the cation used. H+ transport and Mg2+-stimulated ATPase was inhibited by diethylstilbesterol (K0.5 = 2 microM). N-Ethylmaleimide inhibited H+ transport (K0.5 = 30 microM). At low concentrations of N-ethylmaleimide, ATP partially protected H+ transport from inhibition with N-ethylmaleimide. Photolysis with 8-azido-ATP inhibited H+ transport and Mg2+-stimulated ATPase activity. Under these same conditions, 8-azido-[alpha-32P]ATP reacted with a number of polypeptides of the intact lysosome and lysosomal membranes. Pump-dependent potentials were measured using the fluorescent potential-sensitive dye, DiSC3(5) (3,3'-dipropylthiocarbocyanine) and ATP-dependent potential generation was inhibited by diethylstilbesterol. Chloride, but not sulfate reduced the magnitude of the ATP-dependent membrane potential, as measured using merocyanine 540. The chloride conductance, independent of ATP, was of sufficient magnitude to generate a H+ gradient driven by external chloride in the presence of tetrachlorosalicylanilide. In Cl- free media, ATP-dependent H+ transport was restored to control levels by outwardly directed K+ gradients in the presence of valinomycin. The role of cell Cl- is to provide the necessary conductance for supporting lysosomal acidification by the electrogenic proton pump.  相似文献   

15.
Processing of human cathepsin D in lysosomes in vitro   总被引:7,自引:0,他引:7  
The proteolytic maturation of cathepsin D polypeptides was studied in lysosomes isolated from metabolically labeled fibroblasts. In lysosomes isolated from fibroblasts labeled with [35S]methionine, 70-95% of labeled cathepsin D polypeptides were represented by a Mr = 47,000 polypeptide after a 20-min pulse and 75-min chase. When these lysosomes were incubated in vitro, up to 70% of the Mr = 47,000 polypeptide was processed to mature cathepsin D polypeptides. The processing was dependent on the integrity of the lysosomes, had an optimum between pH 6 and 7, and could be stimulated by dithiothreitol and ATP. The noncleavable ATP analogue, adenosine 5'-(beta, gamma-imido)triphosphate, and GTP, CTP, and UTP could not substitute for ATP. The ATP-dependent stimulation was associated with an acidification of lysosomes. It was inhibited by agents that dissipate the lysosomal pH gradient (carbonyl cyanide p-trifluoromethoxyphenylhydrazone, N,N'-dicyclohexylcarbodiimide, nigericin, NH4Cl). A stimulatory effect of ATP was observed also at pH 5.5. The stimulation at pH 5.5 was not associated with acidification of lysosomes and was resistant to protonophores. Inhibitors of lysosomal cysteine proteinases and N-ethylmaleimide inhibited the processing. In the presence of ATP the processing activity was partially protected from inhibition by N-ethylmaleimide. In conclusion, the maturation of cathepsin D in lysosomes depends on cysteine proteinases and is stimulated by the ATP-driven acidification of lysosomes. In addition, ATP stimulates maturation at pH 5.5 by a mechanism not involving the proton pump.  相似文献   

16.
BHK cells expressing human lysosomal acid phosphatase (LAP) transport LAP to lysosomes as an integral membrane protein. In lysosomes LAP is released from the membrane by proteolytic processing, which involves at least two cleavages at the C terminus of LAP. The first cleavage is catalysed by a thiol proteinase at the outside of the lysosomal membrane and removes the bulk of the cytoplasmic tail of LAP. The second cleavage is catalysed by an aspartyl proteinase inside the lysosomes and releases the luminal part of LAP from the membrane-spanning domain. The first cleavage at the cytoplasmic side of the lysosomal membrane depends on acidification of lysosomes and the second cleavage inside the lysosomes depends on prior processing of the cytoplasmic tail. These results suggest that the cytoplasmic tail controls the conformation of the luminal portion of LAP and vice versa.  相似文献   

17.
A rapid cellular-fractionation technique [ Hoek , Nicholls & Williamson (1980) J. Biol. Chem. 255, 1458-1464] was further characterized by using hepatocytes. Of the mitochondrial marker-enzyme activity, 80% was routinely separated from 71-98% of the total cell activities of marker enzymes for plasma membranes, Golgi-membranes, endoplasmic reticulum, lysosomes and cytosol. The mitochondria were contaminated with 53% of cell nuclei. [3H]Triphenylmethylphosphonium ion (TPMP+) was added to hepatocytes in an attempt to measure cellular transmembrane electrical potentials. After rapid cell fractionation the electrical potential between mitochondria in situ and the incubation medium was found to be 202 mV. This value was slightly increased when hepatocytes were treated with oligomycin, but substantially decreased by oligomycin plus an uncoupler of oxidative phosphorylation. Although estimates of TPMP+ binding were obtained, substantial difficulties prevented the accurate measurement of the electrical potential across the plasma membrane. It is concluded that TPMP+ may be employed to demonstrate the integrity of mitochondria during the fractionation procedures. However, the cation is inadequate for the determination of the separate components of the electrical potential between the mitochondrial matrix and the incubation medium.  相似文献   

18.
During endocytosis, mannosylated ligands enter vesicles which have a density intermediate between that of the plasma membrane and secondary lysosomes. Mannosylated ligands are transferred from these vesicles to lysosomes. A solubilization-precipitation assay was used to study the dissociation of mannosylated ligands from their receptor. In whole cells dissociation was rapid (t 1/2 (37 degrees C) = 8 min) and took place before delivery of the ligand to lysosomes. Receptor-ligand dissociation within membrane vesicles, washed free of cytosol, could be induced by addition of ATP and GTP but not ADP. Receptor-ligand dissociation caused by manipulating the pH of the vesicles suggested that the pH within endosomes was lowered to 5.5 by addition of ATP. Dissociation was blocked by proton ionophores and Zn2+, but was unaffected by inhibitors of the F1, Fo-ATPase or the Na+,K+-ATPase. Dissociation did not require Na+ or K+ and was blocked by anion transport inhibitors. Dissociation was slowed in the absence of permeant anions (Cl-). Receptor-ligand complexes within vesicles isolated as early as 2 min following ligand internalization responded to addition of ATP. The results suggest that receptor-ligand dissociation in endosomes requires ATP, possibly to power endosomal acidification via an ATP-dependent proton pump. Dissociation is enhanced in the presence of permeant anions, suggesting the involvement of an anion channel or carrier.  相似文献   

19.
Cholesterol is an essential component of lysosomal membranes. In this study, we investigated the effects of membrane cholesterol on the permeability of rat liver lysosomes to K+ and H+, and the organelle stability. Through the measurements of lysosomal β-hexosaminidase free activity, membrane potential, membrane fluidity, intra-lysosomal pH, and lysosomal proton leakage, we established that methyl-β-cyclodextrin (MβCD)-produced loss of membrane cholesterol could increase the lysosomal permeability to both potassium ions and protons, and fluidize the lysosomal membranes. As a result, potassium ions entered the lysosomes through K+/H+ exchange, which produced osmotic imbalance across the membranes and osmotically destabilized the lysosomes. In addition, treatment of the lysosomes with MβCD caused leakage of the lysosomal protons and raised the intra-lysosomal pH. The results indicate that membrane cholesterol plays important roles in the maintenance of the lysosomal limited permeability to K+ and H+. Loss of this membrane sterol is critical for the organelle acidification and stability.  相似文献   

20.
Proton transport catalyzed by the sodium pump was demonstrated using proteoliposomes reconstituted with purified pig kidney Na+,K+-ATPase. Intravesicular pH was monitored with fluorescence from fluorescein isothiocyanate dextran introduced into the vesicles. An ATP-induced ouabain-sensitive acidification of the intravesicular medium was observed, when the vesicles were incubated with ATP and without Na+. The ATP-induced acidification was blocked by either extravesicular Na+ or pretreatment of the enzyme with ouabain before reconstitution. Protonophores, X-537A or carbonyl cyanide m-chlorophenylhydrazone, abolished the intravesicular acidification. The acidification was not inhibited by 3 mM tetra-n-butylammonium. The initial rate of the H+ uptake was increased with a decrease in pH of the extravesicular medium, and the maximum rate was obtained at pH 5.5-5.6. It is concluded that H+ can be transported in place of Na+ by the sodium pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号