首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A critical step in S6 kinase 1 (S6K1) activation is Thr(229) phosphorylation in the activation loop by the phosphoinositide-dependent protein kinase (PDK1). Thr(229) phosphorylation requires prior phosphorylation of the Ser/Thr-Pro sites in the autoinhibitory domain and Thr(389) in the linker domain, consistent with PDK1 more effectively catalyzing Thr(229) phosphorylation in a variant harboring acidic residues in these positions (S6K1-E389D(3)E). S6K1-E389D(3)E has high basal activity and exhibits partial resistance to rapamycin and wortmannin, and its activity can be further augmented by mitogens, effects presumably mediated by Thr(229) phosphorylation. However, PDK1-induced Thr(229) phosphorylation is reported to be constitutive rather than phosphatidylinositide 3,4,5-trisphosphate-dependent, suggesting that S6K1-E389D(3)E activity is mediated through a distinct site. Here we use phosphospecific antibodies to show that Thr(229) is fully phosphorylated in S6K1-E389D(3)E in the absence of mitogens and that regulation of S6K1-E389D(3)E activity by mitogens, rapamycin, or wortmannin parallels Ser(371) phosphorylation. Consistent with this observation, a dominant interfering allele of the mammalian target of rapamycin, mTOR, inhibits mitogen-induced Ser(371) phosphorylation and activation of S6K1-E389D(3)E, whereas wild type mTOR stimulates both responses. Moreover, in vitro mTOR directly phosphorylates Ser(371), and this event modulates Thr(389) phosphorylation by mTOR, compatible with earlier in vivo findings.  相似文献   

2.
Previous studies have shown that the noncatalytic carboxy-terminal tail of the p70 S6 kinase (amino acids 422 to 525) contains an autoinhibitory pseudosubstrate domain that is phosphorylated in situ during activation and in vitro by mitogen-activated protein kinases. The present study shows that a recombinant p70 deleted of the carboxy-terminal tail (p70 delta CT104) nevertheless exhibits a basal and serum-stimulated 40S kinase activity and susceptibility to inhibition by wortmannin very similar to those of the parent, full-length p70 kinase. Carboxy-terminal deletion reduces the extent of maximal inhibition produced by rapamycin, from > 95% in the full-length p70 to 60 to 80% in p70 delta CT104, without altering the sensitivity to rapamycin inhibition (50% inhibitory concentration of 2 nM). Serum activation of p70 delta CT104, as with the parent, full-length p70, is accompanied by an increase in 32P content (about twofold) in situ and a slowing in electrophoretic mobility; both modifications are inhibited by pretreatment with wortmannin or rapamycin. 32P-peptide maps of p70 delta CT104 show multisite phosphorylation, and wortmannin and rapamycin appear to cause preferential dephosphorylation of the same subset of sites. Thus, it is likely that activation of the kinase requires phosphorylation of p70 at sites in addition to those previously identified in the carboxy-terminal tail. Evidence that the carboxy-terminal tail actually functions as a potent intramolecular inhibitor of kinase activity in situ is uncovered by deletion of a short acidic segment (amino acids 29 to 46) from the p70 amino-terminal noncatalytic region. Deletion of amino acids 29 to 46 causes a >95% inhibition of p70 activity despite continue phosphorylation of the carboxy-terminal tail in situ; additional deletion of the carboxy-terminal tail (yielding p70 delta 29-46/ delta CT104) increases activity 10-fold, to a level approaching that of p70 delta CT104. Deletion of residues 29 to 46 also abolishes completely the sensitivity of p70 to inhibition by rapamycin but does not alter the susceptibility to activation by serum of inhibition by wortmannin. Although the mechanisms underlying the effects of the delta 29-46 deletion are not known, they are not attributable to loss of the major in situ p70 phosphorylation site at Ser-40. Thus, activation of the p70 S6 kinase involves multiple, independent inputs directed at different domains of the p70 polypeptide. Disinhibition from the carboxy-terminal tail requires, in addition to its multisite phosphorylation, an activating input dependent on the presence of amino acids 29 to 46; this p70-activating input may be the same as that inhibited by rapamycin but is distinct from that arising from the wortmannin-inhibitable phosphatidylinositol 3-kinase. In addition, as exemplified by the rapamycin-resistant but mitogen- and wortmannin-sensitive p70 delta 29-46/ delta CT104 mutant, a further activating input, which probably involves site-specific phosphorylation in the segment between amino acids 46 to 421, is necessary.  相似文献   

3.
BACKGROUND: The protein kinase C (PKC) family has been implicated in the control of many cellular functions. Although PKC isotypes are characterized by their allosteric activation, phosphorylation also plays a key role in controlling activity. In classical PKC isotypes, one of the three critical sites is a carboxy-terminal hydrophobic site also conserved in other AGC kinase subfamily members. Although this site is crucial to the control of this class of enzymes, the upstream kinase(s) has not been identified. RESULTS: A membrane-associated kinase activity that phosphorylates the hydrophobic site in PKCalpha was detected. This activity was suppressed when cells were pretreated with the immunosuppresant drug rapamycin or the phosphoinositide (Pl) 3-kinase inhibitor LY294002. These pretreatments also blocked specifically the serum-induced phosphorylation of the hydrophobic site in PKCdelta in vivo. The most highly purified hydrophobic site kinase preparations ( approximately 10,000-fold) reacted with antibodies to PKCzeta/iota. Consistent with this, rapamycin and LY294002 reduced the recovery of PKCzeta from the membrane fraction of transfected cells. An activated mutant of PKCzeta, but not wild-type PKCzeta, induced phosphorylation of the PKCdelta hydrophobic site in a rapamycin-independent manner, whereas a kinase-dead PKCzeta mutant suppressed this serum-induced phosphorylation. The immunopurified, activated mutant of PKCzeta could phosphorylate the PKCdelta hydrophobic site in vitro, whereas wild-type PKCzeta could not. CONCLUSIONS: PKCzeta is identified as a component of the upstream kinase responsible for the phosphorylation of the PKCdelta hydrophobic site in vitro and in vivo. PKCzeta can therefore control the phosphorylation of this PKCdelta site, antagonizing a rapamycin-sensitive pathway.  相似文献   

4.
5.
The immunosuppressive agent rapamycin induces inactivation of p70s6k with no effect on other mitogen-activated kinases. Here we have employed a combination of techniques, including mass spectrometry, to demonstrate that this effect is associated with selective dephosphorylation of three previously unidentified p70s6k phosphorylation sites: T229, T389 and S404. T229 resides at a conserved position in the catalytic domain, whose phosphorylation is essential for the activation of other mitogen-induced kinases. However, the principal target of rapamycin-induced p70s6k inactivation is T389, which is located in an unusual hydrophobic sequence outside the catalytic domain. Mutation of T389 to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. The importance of this site and its surrounding motif to kinase function is emphasized by its presence in a large number of protein kinases of the second messenger family and its conservation in putative p70s6k homologues from as distantly related organisms as yeast and plants.  相似文献   

6.
The immunosuppressant, rapamycin, inhibits cell growth by interfering with the function of a novel kinase, termed mammalian target of rapamycin (mTOR). The putative catalytic domain of mTOR is similar to those of mammalian and yeast phosphatidylinositol (PI) 3-kinases. This study demonstrates that mTOR is a component of a cytokine-triggered protein kinase cascade leading to the phosphorylation of the eukaryotic initiation factor-4E (eIF-4E) binding protein, PHAS-1, in activated T lymphocytes. This event promotes G1 phase progression by stimulating eIF-4E-dependent translation initiation. A mutant YAC-1 T lymphoma cell line, which was selected for resistance to the growth-inhibitory action of rapamycin, was correspondingly resistant to the suppressive effect of this drug on PHAS-1 phosphorylation. In contrast, the PI 3-kinase inhibitor, wortmannin, reduced the phosphorylation of PHAS-1 in both rapamycin-sensitive and -resistant T cells. At similar drug concentrations (0.1-1 microM), wortmannin irreversibly inhibited the serine-specific autokinase activity of mTOR. The autokinase activity of mTOR was also sensitive to the structurally distinct PI 3-kinase inhibitor, LY294002, at concentrations (1-30 microM) nearly identical to those required for inhibition of the lipid kinase activity of the mammalian p85-p110 heterodimer. These studies indicate that the signaling functions of mTOR, and potentially those of other high molecular weight PI 3-kinase homologs, are directly affected by cellular treatment with wortmannin or LY294002.  相似文献   

7.
The activation of p70s6k is associated with multiple phosphorylations at two sets of sites. The first set, S411, S418, T421, and S424, reside within the autoinhibitory domain, and each contains a hydrophobic residue at -2 and a proline at +1. The second set of sites, T229 (in the catalytic domain) and T389 and S404 (in the linker region), are rapamycin sensitive and flanked by bulky aromatic residues. Here we describe the identification and mutational analysis of three new phosphorylation sites, T367, S371, and T447, all of which have a recognition motif similar to that of the first set of sites. A mutation of T367 or T447 to either alanine or glutamic acid had no apparent effect on p70s6k activity, whereas similar mutations of S371 abolished kinase activity. Of these three sites and their surrounding motifs, only S371 is conserved in p70s6k homologs from Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae, as well as many members of the protein kinase C family. Serum stimulation increased S371 phosphorylation; unlike the situation for specific members of the protein kinase C family, where the homologous site is regulated by autophosphorylation, S371 phosphorylation is regulated by an external mechanism. Phosphopeptide analysis of S371 mutants further revealed that the loss of activity in these variants was paralleled by a block in serum-induced T389 phosphorylation, a phosphorylation site previously shown to be essential for kinase activity. Nevertheless, the substitution of an acidic residue at T389, which mimics phosphorylation at this site, did not rescue mutant p70s6k activity, indicating that S371 phosphorylation plays an independent role in regulating intrinsic kinase activity.  相似文献   

8.
The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR.  相似文献   

9.
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.  相似文献   

10.
p70 S6 kinase alpha (p70alpha) is activated in vivo through a multisite phosphorylation in response to mitogens if a sufficient supply of amino acids is available or to high concentrations of amino acids per se. The immunosuppressant drug rapamycin inhibits p70alpha activation in a manner that can be overcome by coexpression of p70alpha with a rapamycin-resistant mutant of the mammalian target of rapamycin (mTOR) but only if the mTOR kinase domain is intact. We report here that a mammalian recombinant p70alpha polypeptide, extracted in an inactive form from rapamycin-treated cells, can be directly phosphorylated by the mTOR kinase in vitro predominantly at the rapamycin-sensitive site Thr-412. mTOR-catalyzed p70alpha phosphorylation in vitro is accompanied by a substantial restoration in p70alpha kinase activity toward its physiologic substrate, the 40 S ribosomal protein S6. Moreover, sequential phosphorylation of p70alpha by mTOR and 3-phosphoinositide-dependent protein kinase 1 in vitro resulted in a synergistic stimulation of p70alpha activity to levels similar to that attained by serum stimulation in vivo. These results indicate that mTOR is likely to function as a direct activator of p70 in vivo, although the relative contribution of mTOR-catalyzed p70 phosphorylation in each of the many circumstances that engender p70 activation remains to be defined.  相似文献   

11.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

12.
Interleukin-6 (IL-6) is a prominent tumor growth factor for malignant multiple myeloma cells. In addition to its known activation of the Janus tyrosine kinase-STAT and RAS-MEK-ERK pathways, recent work suggests that IL-6 can also activate the phosphatidylinositol 3-kinase (PI3-K)/AKT kinase pathway in myeloma cells. Because activation of the PI3-K/AKT as well as RAS-MEK-ERK pathways may result in downstream stimulation of the p70(S6K) (p70) and phosphorylation of the 4E-BP1 translational repressor, we assessed these potential molecular targets in IL-6-treated myeloma cells. IL-6 rapidly activated p70 kinase activity and p70 phosphorylation. Activation was inhibited by wortmannin, rapamycin, and the ERK inhibitors PD98059 and UO126, as well as by a dominant negative mutant of AKT. The concurrent requirements for both ERK and PI3-K/AKT appeared to be a result of their ability to phosphorylate p70 on different residues. In contrast, IL-6-induced phosphorylation of 4E-BP1 was inhibited by rapamycin, wortmannin, and dominant negative AKT but ERK inhibitors had no effect, indicating ERK function was dispensable. In keeping with these data, a dominant active AKT mutant was sufficient to induce 4E-BP1 phosphorylation but could not by itself activate p70 kinase activity. Prevention of IL-6-induced p70 activation and 4E-BP1 phosphorylation by the mammalian target of rapamycin inhibitors rapamycin and CCI-779 resulted in inhibition of IL-6-induced myeloma cell growth. These results indicate that both ERK and PI3-K/AKT pathways are required for optimal IL-6-induced p70 activity, but PI3-K/AKT is sufficient for 4E-BP1 phosphorylation. Both effects are mediated via mammalian target of rapamycin function, and, furthermore, these effects are critical for IL-6-induced tumor cell growth.  相似文献   

13.
p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.  相似文献   

14.
S6K1alphaII is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (T229) and hydrophobic motif (HM; T389) regions of its catalytic kinase domain [S6K1alphaII(DeltaAID); deletion of C-terminal autoinhibitory domain residues 399-502]. With regard to mimicking the synergistic effect of full dual site phosphorylation, baculovirus-mediated expression and affinity purification of the His(6)-S6K1alphaII(DeltaAID)-T229E,T389E double mutant from Sf9 insect cells yielded enzyme with compromised activity. Higher activity preparations were generated using the Sf9 purified His(6)-S6K1alphaII(DeltaAID)-T389E single mutant isoform, which was in vitro phosphorylated by the upstream T229 kinase, PDK1 ( approximately 75 nmol/min/mg). Most significantly, we report that the His(6)-S6K1alphaII(DeltaAID)-T389E construct was generated in its most highly active form (250 nmol/min/mg) by baculovirus-mediated expression and purification from Sf9 insect cells that were coinfected with recombinant baculovirus expressing the catalytic kinase domain of PDK1 [His(6)-PDK1(DeltaPH)]. Approximately equal amounts of fully activated His(6)-S6K1alphaII(DeltaAID)-T389E (5+/-1 mg) and His(6)-PDK1(DeltaPH) (8+/-2 mg) were His(6) affinity co-purified 60 h after initial coinfection of 200 mL of Sf9 insect cells (2x10(6) cells/mL), which were resolved by MonoQ anion exchange chromatography. ESI-TOF mass spectrometry, MonoQ anion exchange chromatography, and kinetic assays showed His(6)-PDK1(DeltaPH) to phosphorylate T229 to approximately 100% after co-expression in Sf9 insect cells as compared to approximately 50% under in vitro conditions, raising interest to mechanistic components not fully achieved in the in vitro reaction. Generation of fully activated S6K1 will facilitate more rigorous analysis of its structure and mechanism.  相似文献   

15.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

16.
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome with manifestations that can include seizures, mental retardation, autism, and tumors in the brain, retina, kidney, heart, and skin. The products of the TSC1 and TSC2 genes, hamartin and tuberin, respectively, heterodimerize and inhibit the mammalian target of rapamycin (mTOR). We found that tuberin expression increases p42/44 MAPK phosphorylation and B-Raf kinase activity. Short interfering RNA down-regulation of tuberin decreased the p42/44 MAPK phosphorylation and B-Raf activity. Expression of Rheb, the target of the GTPase-activating domain of tuberin, inhibited wild-type B-Raf kinase but not activated forms of B-Raf. The interaction of endogenous Rheb with B-Raf was enhanced by serum and by Ras overexpression. A farnesylation-defective mutant of Rheb co-immunoprecipitated with and inhibited B-Raf but did not activate ribosomal protein S6 kinase, indicating that farnesylation is not required for B-Raf inhibition by Rheb and that B-Raf inhibition and S6 kinase activation are separable activities of Rheb. Consistent with this, inhibition of B-Raf and p42/44 MAPK by Rheb was resistant to rapamycin in contrast to Rheb activation of S6 kinase, which is rapamycin-sensitive. Taken together these data demonstrate that inhibition of B-Raf kinase via Rheb is an mTOR-independent function of tuberin.  相似文献   

17.
The function of insulin receptor substrate-1 (IRS-1), a key molecule of insulin signaling, is modulated by phosphorylation at multiple serine/threonine residues. Phorbol ester stimulation of cells induces phosphorylation of two inhibitory serine residues in IRS-1, i.e. Ser-307 and Ser-318, suggesting that both sites may be targets of protein kinase C (PKC) isoforms. However, in an in vitro system using a broad spectrum of PKC isoforms (alpha, beta1, beta2, delta, epsilon, eta, mu), we detected only Ser-318, but not Ser-307 phosphorylation, suggesting that phorbol ester-induced phosphorylation of this site in intact cells requires additional signaling elements and serine kinases that link PKC activation to Ser-307 phosphorylation. As we have observed recently that the tyrosine phosphatase Shp2, a negative regulator of insulin signaling, is a substrate of PKC, we studied the role of Shp2 in this context. We found that phorbol ester-induced Ser-307 phosphorylation is reduced markedly in Shp2-deficient mouse embryonic fibroblasts (Shp2-/-) whereas Ser-318 phosphorylation is unaltered. The Ser-307 phosphorylation was rescued by transfection of mouse embryonic fibroblasts with wild-type Shp2 or with a phosphatase-inactive Shp2 mutant, respectively. In this cell model, tumor necrosis factor-alpha-induced Ser-307 phosphorylation as well depended on the presence of Shp2. Furthermore, Shp2-dependent phorbol ester effects on Ser-307 were blocked by wortmannin, rapamycin, and the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. This suggests an involvement of the phosphatidylinositol 3-kinase/mammalian target of rapamycin cascade and of JNK in this signaling pathway resulting in IRS-1 Ser-307 phosphorylation. Because the activation of these kinases does not depend on Shp2, it is concluded that the function of Shp2 is to direct these activated kinases to IRS-1.  相似文献   

18.
The mTOR protein kinase is the target of the immunosuppressive and anti-cancer drug rapamycin and is increasingly recognized as a key regulator of cell growth in mammals. S6 kinase 1 (S6K1) is the best characterized effector of mTOR, and its regulation serves as a model for mTOR signaling. Nutrients and growth factors activate S6K1 by inducing the phosphorylation of threonine 389 in the hydrophobic motif of S6K1. As phosphorylation of Thr(389) is rapamycin sensitive and mTOR can phosphorylate the same site in vitro, it has been suggested that mTOR is the physiological Thr(389) kinase. This proposal is not supported, however, by the existence of mutants of S6K1 that are phosphorylated in vivo on Thr(389) in a rapamycin-resistant fashion. Here, we demonstrate that the raptor-mTOR complex phosphorylates the rapamycin-sensitive forms of S6K1, while the distinct rictor-mTOR complex phosphorylates the rapamycin-resistant mutants of S6K1. Phosphorylation of Thr(389) by rictor-mTOR is independent of the TOR signaling motif and depends on removal of the carboxyl terminal domain of S6K1. Because many members of the AGC family of kinases lack an analogous domain, rictor-mTOR may phosphorylate the hydrophobic motifs of other kinases.  相似文献   

19.
We have previously shown that the vasoconstrictive peptide angiotensin II (ANG II) is a hypertrophic agent for human coronary artery smooth muscle cells (cSMCs), which suggests that it plays a role in vascular wall thickening. The present study investigated the intracellular signal transduction pathways involved in the growth response of cSMCs to ANG II. The stimulation of protein synthesis by ANG II in cSMCs was blocked by the immunosuppressant rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway that includes the 70-kDa S6 kinase (p70(S6k)) and plays a key role in cell growth. The inhibitory effect of rapamycin was reversed by a molar excess of FK506; this indicates that both agents act through the common 12-kDa immunophilin FK506-binding protein. ANG II caused a rapid and sustained activation of p70(S6k) activity that paralleled its phosphorylation, and both processes were blocked by rapamycin. In addition, both of the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 abolished the ANG II-induced increase in protein synthesis, and wortmannin also blocked p70(S6k) phosphorylation. Furthermore, ANG II triggered dissociation of the translation initiation factor, eukaryotic initiation factor-4E, from its regulatory binding protein 4E-BP1, which was also inhibited by rapamycin and wortmannin. In conclusion, we have shown that ANG II activates components of the rapamycin-sensitive mTOR signaling pathway in human cSMCs and involves activation of phosphatidylinositol 3-kinase, p70(S6k), and eukaryotic initiation factor-4E, which leads to activation of protein synthesis. These signaling mechanisms may mediate the growth-promoting effect of ANG II in human cSMCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号