首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparations of purified peptidoglycan of Escherichia coli (i.e., sacculi) were studied by low-angle laser light scattering. Control experiments and theoretical calculations based on the Rayleigh-Gans theory showed that the mean sacculus surface area could be accurately inferred from measurements with our apparatus by using computer routines developed previously. Large changes in the mean saccular surface area resulted from alterations in the stress caused by varying the net charge on the sacculi. The net charge was affected by altering the suspending medium pH, causing carboxyl and amino groups in the peptidoglycan to gain or lose protons, or by acetylation or succinylation of the amino groups. A preponderance of either plus or minus charges caused an expansion of the mean sacculus surface area. The largest increase in area probably represents the elastic limit of the peptidoglycan and was 300% above the area of isoionic sacculi. This degree of expansion is consistent with possible conformations of the intact peptidoglycan structure without necessitating rupture of the wall fabric. Our findings concerning saccular elasticity provide support for the surface stress theory. It provides a mechanism so that bacteria can grow and divide while maintaining turgor pressure, without the necessity of having and using proteins to do the mechanical work.  相似文献   

2.
Atomic force microscopy was used to measure the thickness of air-dried, collapsed murein sacculi from Escherichia coli K-12 and Pseudomonas aeruginosa PAO1. Air-dried sacculi from E. coli had a thickness of 3.0 nm, whereas those from P. aeruginosa were 1.5 nm thick. When rehydrated, the sacculi of both bacteria swelled to double their anhydrous thickness. Computer simulation of a section of a model single-layer peptidoglycan network in an aqueous solution with a Debye shielding length of 0.3 nm gave a mass distribution full width at half height of 2.4 nm, in essential agreement with these results. When E. coli sacculi were suspended over a narrow groove that had been etched into a silicon surface and the tip of the atomic force microscope used to depress and stretch the peptidoglycan, an elastic modulus of 2.5 x 10(7) N/m(2) was determined for hydrated sacculi; they were perfectly elastic, springing back to their original position when the tip was removed. Dried sacculi were more rigid with a modulus of 3 x 10(8) to 4 x 10(8) N/m(2) and at times could be broken by the atomic force microscope tip. Sacculi aligned over the groove with their long axis at right angles to the channel axis were more deformable than those with their long axis parallel to the groove axis, as would be expected if the peptidoglycan strands in the sacculus were oriented at right angles to the long cell axis of this gram-negative rod. Polar caps were not found to be more rigid structures but collapsed to the same thickness as the cylindrical portions of the sacculi. The elasticity of intact E. coli sacculi is such that, if the peptidoglycan strands are aligned in unison, the interstrand spacing should increase by 12% with every 1 atm increase in (turgor) pressure. Assuming an unstressed hydrated interstrand spacing of 1.3 nm (R. E. Burge, A. G. Fowler, and D. A. Reaveley, J. Mol. Biol. 117:927-953, 1977) and an internal turgor pressure of 3 to 5 atm (or 304 to 507 kPa) (A. L. Koch, Adv. Microbial Physiol. 24:301-366, 1983), the natural interstrand spacing in cells would be 1.6 to 2.0 nm. Clearly, if large macromolecules of a diameter greater than these spacings are secreted through this layer, the local ordering of the peptidoglycan must somehow be disrupted.  相似文献   

3.
The localization of the major autolytic enzyme, the soluble lytic transglycosylase, in the different cell compartments of Escherichia coli was investigated by immunoelectron microscopy. Ultrathin sections were labeled with a specific antiserum against purified soluble lytic transglycosylase, and the antibody-enzyme complexes were visualized with colloidal protein A-gold. A preferential localization of the lytic transglycosylase in the envelope was observed, with only 20 to 30% of the enzyme left in the cytoplasm. Most of the enzyme associated with the cell wall was tightly bound to the murein sacculus. Sacculi prepared by boiling of cells in 4% sodium dodecyl sulfate could be immunolabeled with the specific antiserum, indicating a surprisingly strong interaction of the lytic transglycosylase with murein. The enzyme-substrate complex could be reconstituted in vitro by incubating pronase-treated, protein-free murein sacculi with purified lytic transglycosylase at 0 degrees C. Titration of sacculi with increasing amounts of enzyme indicated a limiting number of binding sites for about 1,000 molecules of enzyme per sacculus. Ruptured murein sacculi obtained after penicillin treatment revealed that the enzyme is exclusively bound to the outer surface of the sacculus. This finding is discussed in the light of recent evidence suggesting that the murein of E. coli might be a structure of more than one layer expanding by inside-to-outside growth of patches of murein.  相似文献   

4.
The induction kinetics and surface accessibility of the outer membrane lipoprotein were studied in an Escherichia coli strain with the lpp gene under control of the lac promoter. Free lipoprotein appeared rapidly after induction with isopropyl-beta-D-thiogalactopyranoside and reached a steady-state level after 30 min. The newly induced lipoprotein was slowly bound to the peptidoglycan layer. Immunological methods were developed to detect lipoprotein accessible at the cell surface after various pretreatments as well as peptidoglycan-bound lipoprotein at the surface of isolated peptidoglycan sacculi with specific antibodies in combination with 125I-protein A. With these methods an increase in lipoprotein molecules at the cell surface and bound to the peptidoglycan sacculus could be detected following induction. The topology of newly synthesized lipoprotein was examined in thin sections as well as at the cell surface and the surface of the peptidoglycan sacculus with immunoelectron microscopy. Ultrathin cell sections, whole cells, and isolated peptidoglycan sacculi showed lipoprotein distributed homogeneously over the entire surface.  相似文献   

5.
Morphogenetic Aspects of Murein Structure and Biosynthesis   总被引:9,自引:5,他引:4       下载免费PDF全文
The shape of Escherichia coli is fixed by the form of the sacculus. This sacculus is a macromolecule made up from the polymer murein. In an investigation of the possible factors determining the shape of the sacculus, we attempted to resolve between two fundamental alternatives. (i) Is the shape of the sacculus automatically fixed by its chemical composition? or (ii) does a special morphogenetic system exist which determines the shape of the sacculus? An analysis of sacculi from cells grown in poor and rich media and harvested at different stages of growth was made. Significant variations in the composition of murein were found, whereas the general shape of the cells remained unchanged. This finding stands opposed to the assumption of a strict correlation between chemistry and shape of the sacculus. The second alternative was investigated by attempting to change artificially the shape of the sacculus by modifying the form of the hypothetical morphogenetic system. Rod-shaped cells were converted into spherical spheroplasts which were subsequently allowed to reform a new spherical sacculus. In chemical composition this spherical sacculus was found to be indistinguishable from the rod-shaped sacculus. This finding is taken as evidence for the existence of a distinct morphogenetic apparatus in the cell wall whose form is reflected by the shape of the sacculus.  相似文献   

6.
The growth pattern of the murein-sacculus which determines the shape of the Escherichia coli cell was studied by the use of high-resolution autoradiography with the electron microscope. The murein was pulse labelled with 3H-labelled diaminopimelic acid as a specific murein precursor and sacculi were prepared immediately. The radioactivity of the nascent murein appeared on the auto- radiographs at a well-defined growth zone in the central area of the sacculus. This was true regardless of the size of the cells. Pulse chase experimenta show rapid mixing of labelled murein with pre-existing murein and its even distribution over the whole surface of the sacculus.  相似文献   

7.
Tetragonal layer protein (T-layer) isolated from Bacillus sphaericus NTCC 9602 (wild type) or 9602 Lmw (variant) bonded specifically to the sacculi (peptidoglycan) of either cell type. Only uncleaved T-layer subunits were capable of specific recognition of the B. sphaericus sacculi; other Bacillus strains and gram-positive bacterial sacculi would not adsorb B. sphaericus strain 9602 T-layer. The peptidogylcan did not function as a template since isolated T-layer subunits self-assembled into characteristic pattern. Upon reassociation with sacculi, T-layer assemblies were randomly oriented patches compared with more continuous strictly oriented pattern on cells or fresh cell walls. T-layer associated with the sacculus was less susceptible to conditions that dissociated in vitro-assembled T-layer. Mild proteolysis of both wild-type and variant T-layer subunits by a variety of enzymes reduced the molecular weight by 18,000 in all cases, indicating that one region of the molecule was particularly susceptible to cleavage. Subunits from which the minor fragment had been cleaved upon aging retained the capacity to assemble in vitro, but would no longer adsorb to sacculi. Thus, the ability of T-layer to form networks was separate from its ability to bind cell walls, and the 18,000-dalton piece of the T-layer polypeptide was necessary for attachment to the cell wall.  相似文献   

8.
Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage.Non Standard Abbreviations SDS sodium dodecylsulfate - EDTA ethylenediaminetetra acetic acid - DNP dinitrophenyl Dedicated to Prof. Dr. Adolf Butenandt on the occasion of his 75th birthday  相似文献   

9.
The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi.  相似文献   

10.
During diaminopimelic acid starvation of Escherichia coli W7, a large fraction of the preexisting murein cross-links are opened by murein endopeptidase and the resulting uncross-linked material is degraded. This is reflected morphologically in a general loss of rigidity of the murein sacculus long before lysis occurs. In growing cells, a dynamic situation is demonstrable. When cells whose murein sacculi are uniformly labeled with [14C]diaminopimelic acid were chased with unlabeled DAP, a significant, rapid shift of [14C]diaminopimelic acid from the donor to the acceptor half of dimers was observed. The shift can be explained by the presence of about 100 separate sites where new murein strands were being inserted between old radioactive strands of murein. Thus, the gradual loss of rigidity of the murein sacculus as endopeptidase continues to function during starvation of E. coli W7 suggests an even distribution of the active endopeptidases. This is consistent with the kinetic data which suggest that endopeptidase, along with murein synthetase and transpeptidase, acts at about 100 distinct sites to elongate the murein sacculus.  相似文献   

11.
The amino acid sequence of the peptide subunits of the peptide moiety of the sacculus polymer (pseudomurein) of Methanobacterium thermoautotrophicum was elucidated by analysing overlapping peptides obtained from partial acid hydrolysates of isolated sacculi. It is suggested that the peptide subunits are attached to glycan strands via one of their glutamyl residues. Another glutamyl residue may crosslink two adjacent peptide subunits to form a dimer. The calculated molar ratios of the amino acids and the percentages of the N-or C-terminal amino acid residues of the supposed dimers are compatible with those actually found in the sacculus polymer.  相似文献   

12.
Amount of peptidoglycan in cell walls of gram-negative bacteria.   总被引:10,自引:7,他引:3       下载免费PDF全文
The amount of diaminopimelic acid (Dap) in the cell wall of Escherichia coli was measured in two ways. A radiochemical method first described by us in 1985 (F. B. Wientjes, E. Pas, P. E. M. Taschner, and C. L. Woldringh, J. Bacteriol. 164:331-337, 1985) is based on the steady-state incorporation of [3H]Dap during several generations. Knowing the cell concentration and the specific activity of the [3H]Dap, one can calculate the number of Dap molecules per sacculus. The second method measures the Dap content chemically in sacculi isolated from a known number of cells. With both methods, a value of 3.5 x 10(6) Dap molecules per sacculus was obtained. Combined with electron microscopic measurements of the surface area of the cells, the data indicate an average surface area per disaccharide unit of ca. 2.5 nm2. This finding suggests that the peptidoglycan is basically a monolayered structure.  相似文献   

13.
Cells of Proteus mirabilis, synchronized by sucrose density gradient centrifugation, were grown in complex medium containing radioactive N-acetylglucosamine. At various times, labelled murein sacculi were isolated and digested with endo-N,O-acetylmuramidase from Chalaropsis. The murein fragments thus obtained were separated into disaccharide peptides as the monomeric subunits and into peptide-cross-linked subunits by gel filtration. The subunits were further differentiated into O-acetylated and non-O-acetylated species, and into subunits containing anhydro-N-acetylmuramic acid which were glycan chain terminators in the native sacculi. Quantification of the subunit species gave the following results. At specific times during the cell cycle, murein subunits were lost from the polymer and a transient decrease in cross-linkage was observed. The overall degree of cross-linkage in mature murein, i.e. the ratio of peptide-cross-linked subunits versus uncross-linked subunits, was 1.15 as determined by regression analysis. Anhydro-N-acetylmuramic-acid-containing murein subunits representing glycan chain terminators were found either peptide-cross-linked or uncross-linked as monomers. Since these two subunit species were recovered in a defined ratio of 1.6, mature murein consisted of at least two different types of glycan chains. On average, each chain contained 15.4 murein subunits. About 60% of the murein subunits in mature murein were O-acetylated and showed a higher degree of cross-linkage than the non-O-acetylated portion. Finally, following the composition of the sacculus during the cell cycle revealed a complex precursor-product relationship between non-O-acetylated and O-acetylated subunits during murein maturation. The data allowed us to deduce several features of the assembly process of murein sacculi.  相似文献   

14.
Cell division in Gram‐negative organisms requires coordinated invagination of the multilayered cell envelope such that each daughter receives an intact inner membrane, peptidoglycan (PG) layer and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ‐dependent manner via its PG‐binding LysM domains. Although not essential for viability, ΔdipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the PG as compared to wild type, which we hypothesize leads to loss of trans‐envelope contacts between components of the Tol–Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope.  相似文献   

15.
Isolation and analysis of sacculi from Streptococcus sanguis.   总被引:4,自引:3,他引:1       下载免费PDF全文
V M Reusch  Jr 《Journal of bacteriology》1982,151(3):1543-1552
Sacculi were prepared from Streptococcus sanguis 34 by exhaustive extraction of bacteria with hot 1% sodium dodecyl sulfate-0.5% 2-mercaptoethanol. Lyophilized residue was dissociated by brief sonication to single bodies closely resembling streptococci in phase-contrast microscopic density, staining properties, and morphology. Electron micrographs revealed bodies that contained variable amounts of cellular contents and were bounded by intact cell walls. Chemical analyses of sacculi demonstrated the presence of peptidoglycan, carbohydrate, protein, and phosphate. The hexose content of sacculi varied 10-fold depending upon the composition of the growth medium. When sacculi were subjected to treatment with 5 M LiCl, 8 M urea, 40% phenol (25 degrees C), or dimethyl sulfoxide most of the nitrogen and carbohydrate present was recovered in the insoluble fraction. These data suggest that sacculi contain the cell wall fraction of the extracted bacteria and that most of the carbohydrates and proteins of sacculi are firmly bound to the insoluble fraction, which contains the peptidoglycan matrix.  相似文献   

16.
The present study aims to provide further contribution towards identifying the ions which actually sustain the receptor current in labyrinthine sensory cells. The experiments were carried out on isolated sacculi of the frog. The macular epithelium of the sacculus was positioned in a two compartment chamber which allows the fluid bathing the inside and the outside of the sacculus to be replaced separately with solutions having different ionic composition. The potential across the epithelium was clamped to zero and both the receptor current and the postsynaptic potentials in response to mechanical stimuli were first recorded when the endolymphatic fluid had a normal ionic composition and then, at different time intervals, after replacing the endolymph with solutions deprived of K+ (replaced with Na+, Rb+, Cs+ and Ca++) and Na+ (replaced with choline and saccharose). The results have shown that both the receptor current and the postsynaptic potentials are abolished after replacing the endolymphatic K+ with Na+, Cs+ or Ca++, whereas are partially preserved when K+ is replaced with Rb+. These findings strongly suggest that the receptor current in labyrinthine sensory cells is carried almost exclusively by K+ and that this current flows across specific K-channels.  相似文献   

17.
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.  相似文献   

18.
This letter presents our first results in using the benefit of selective deuteration in neutron diffraction studies on stratum corneum (SC) lipid model systems. The SC represents the outermost layer of the mammalian skin and exhibits the main skin barrier. It is essential for studying drug penetration through the SC to know the internal structure and hydration behaviour on the molecular level. The SC intercellular matrix is mainly formed by ceramides (CER), cholesterol (CHOL) and long- chain free fatty acids (FFA). Among them, CHOL is the most abundant individual lipid, but a detailed knowledge about its localisation in the SC lipid matrix is still lacking. The structure of the quaternary SC lipid model membranes composed of either CER[AP]/CHOL-D6/palmitic acid (PA)/cholesterol sulphate (ChS) or CER[AP]/CHOL-D7/PA/ChS is characterized by neutron diffraction. Neutron diffraction patterns from the oriented samples are collected at the V1 diffractometer of the Hahn-Meitner-Institute, Berlin, measured at 32°C, 60% humidity and at different D2O contents. The neutron scattering length density profile in the direction normal to the surface is restored by Fourier synthesis from the experimental diffraction patterns. The analysis of scattering length density profile is a suitable tool for investigating the internal structure of the SC lipid model membranes. The major finding is the experimental proof of the CHOL localisation in SC model membrane by deuterium labelling at prominent positions in the CHOL molecules.  相似文献   

19.
The phase structure of isolated bacterial lipid A, the lipid anchor of the lipopolysaccharides of the outer membrane of Gram-negative bacteria, has been investigated by neutron small-angle scattering. The shape of the scattering curves obtained at different H2O/2H2O ratios revealed a lamellar organisation of the lipid A at neutral pH both above and below its main phase temperature (approximately 40-45 degrees C). Analysis of the scattering curves and interpretation of the corresponding thickness distance distribution functions of the lamellar aggregates led to a model in which the lipid A molecules form a bilayer of about 5 nm in thickness. This value for the thickness of the bilayer, as well as the neutron-scattering density profile across the bilayer, can be explained by a molecular model which shows interdigitation of the fatty acid chains of the lipid A.  相似文献   

20.
A method was developed to isolate renal basolateral membranes from cortical kidney tubule cells of single rats. The isolated membrane fraction was characterized by the measurement of marker enzyme activities and by electron microscopy. 1. After centrifugation of crude plasma membranes on a discontinuous sucrose density gradient the basolateral membranes accumulated at a sucrose density of p= 1.14-1.15 g/ml. The yield was 147 mug membrane protein/g kidney wet weight. Protein recovery was 0.1%. 2. (Na+ + K+)-ATPase was enriched 22-fold from the homogenate. The recovery was 2.6%. The (Na+ + K+)/Mg2+-ATPase ratio was 4.1. 3. The contamination by brush borders was small. Alkaline phosphatase was 1.6-fold enriched and 0.2% was recovered. Aminopeptidase was 1-fold enriched with a recovery of 0.1%. The contamination by mitochondria, lysosomes and endoplasmic reticulum was negligible. 4. In electron micrographs the basolateral membranes showed a typical triple layered profile and were characterized by the presence of junctional complexes, gap junctions or tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号