首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parsons LR  Li PH 《Plant physiology》1979,64(3):351-353
Moderate water stress increases frost hardiness in many woody plants but little attention has been given to changes in hardiness after recovery from water stress. Tests were carried out to examine how much water stress-induced frost hardiness remained when plants were rewatered under different day length regimes. Red osier dogwood plants (Cornus stolonifera Michx.) were water-stressed at normal growing temperatures in long day (LD) or short day (SD) conditions, exposed to 6 nights of freezing temperatures, and then returned to normal growing conditions with full water supply. Water-stressed plants gained an additional 8 to 10 C of hardiness. The amount of freeze-induced hardiness in both stressed and control plants was not significant (approximately 2 C) and was not affected by photoperiod. When plants were kept in or transferred to LD, they lost nearly all of their water stress-induced hardiness within 7 days after rewatering. Water-stressed plants in SD lost the least amount of hardiness (5 C) when rewatered. In dogwood, water stress is an effective way to increase hardiness temporarily, but the photoperiod has a large effect on the retention of the acquired hardiness.  相似文献   

2.
Flowering requirements of three Scandinavian cultivars of Dactylis glomerata L. have been studied in controlled environments. At temperatures ranging from 9 to 21°C optimal flowering required 10 weeks of exposure to short days (SD) followed by exposure to long days (LD). Only a few plants flowered in continuous LD and no primary induction took place in any daylength at 24 or 27°C. However, at a temperature of 3°C primary induction occurred also in 24 h LD, but more than 20 weeks of treatment were required for 100% flowering. The critical photoperiod for secondary induction was about 12–13 h, depending on the latitude of origin of the cultivar. A critical number of 12 to 16 LD cycles was required for 100% flowering, although some plants flowered after only 4 LD. A high proportion of viviparous proliferation resulted from marginal LD induction. Initiation of floral primordia did not take place in SD but required a transition from SD to LD. These results demonstrate that D. glomerata is a true short-long-day plant.  相似文献   

3.
Plants of Phippsia algida (Sol.) R. Br. were cultivated in short days (SD; 8 h summer daylight) and in long days (LD; 8 h summer daylight + 16 h low irradiance extension of 5 μmol m−2 s−1) at 9, 15, and 21°C. In this plant, inflorescence primordia are initiated in both LD and SD, but LD are required for heading and inflorescence development (Heide, O.M.; Physiol. Plant. 85: 606–610. 1992). Total dry matter production was slightly increased by LD over SD at 9°C, while it was little affected by daylength at 15 and 21°C. Phippsia algida contained mainly fructans with a low degree of polymerization, largely of the kestose series. After 29 to 42 days (depending on the temperatature) of photoperiodic treatment, fructans constituted 15–20 percent of dry mass of SD-grown plants compared with only 2–3 percent of dry mass for LD-grown flowering plants. There was no difference due to photoperiod in levels of mono- and disaccharides. Shifting the SD-grown plants to LD conditions resulted in rapid inflorescence development, accompanied by a parallel rapid decrease in the fructan level, while the level of mono- and disaccharides remained constant. The results show that fructans are important as storage carbohydrates in the late snow-bed species P. algida that normally requires several growing seasons for completing its life cycle. Exhaustion of this storage pool during the extremely fast flower and fruit development constitutes an essential part of the plants adaption to a very short growing season.  相似文献   

4.
The influence of exogenously applied sucrose on cold hardening of raspberry ( Rubus idaeus L.) in vitro was examined. Raspberry plants (cv. Preussen) were cultured on Murashige-Skoog (MS) media with different levels (1, 3, 5 and 7%) of sucrose and subjected to low-temperature acclimation (3/−3°C day/night temperature, 8-h photoperiod) for 14 days. Cold hardiness (LT50 in controlled freezing), shoot moisture content, osmolality and the amounts of sucrose, glucose and fructose were determined. Exogenously applied sucrose was taken up by plants, but the uptake corresponded to less than 10% of total sugar reserves in the culture. Cold hardiness was primarily affected by acclimation treatment, but sucrose increased cold hardiness of nonacclimated plants and significantly enhanced the effect of acclimation treatment, 5% sucrose in the culture medium being optimal for cold hardening. LT50 values ranged between −4.1 and −7.1°C for nonacclimated, and between −14.2 and −20.7°C for cold-acclimated shoots. Shoot moisture content was inversely related to medium sucrose level and declined only slightly during cold acclimation. After cold acclimation, plant osmolality predicted hardiness better than shoot moisture content. Plant osmolality and sugar content were increased by increasing the medium sucrose level and, to a greater extent, by cold acclimation. Sucrose, glucose and fructose accumulated during hardening. Sucrose was the predominant sugar, and the rate of sucrose accumulation during cold acclimation was independent of the medium sucrose level or the initial plant sucrose content. A close correlation between cold hardiness and total sugars, sucrose, glucose and fructose was established. These results suggest that sugars have more than a purely osmotic effect in protecting acclimated raspberry plants from cold.  相似文献   

5.
Floral induction and development requirements of a range of latitudinal and altitudinal Norwegian populations of the wild strawberry Fragaria vesca L. have been studied in controlled environments. Rooted runner plants were exposed to a range of photoperiods and temperatures for 5 weeks for floral induction and then transferred to long day (LD) at 20°C for flower development. A pronounced interaction of temperature and photoperiod was shown in the control of flowering. At 9°C, flowers were initiated in both short day (SD) and LD conditions, at 15 and 18°C in SD only, whereas no initiation took place at 21°C regardless of daylength conditions. The critical photoperiod for SD floral induction was about 16 h and 14 h at 15 and 18°C, respectively, the induction being incomplete at 18°C. The optimal condition for floral induction was SD at 15°C. A minimum of 4 weeks of exposure to such optimal conditions was required. Although the populations varied significantly in their flowering performance, no clinal relationship was present between latitude of origin and critical photoperiod. Flower development of SD-induced plants was only marginally advanced by LD conditions, while inflorescence elongation and runnering were strongly enhanced by LD at this stage. The main shift in these responses took place at photoperiods between 16 and 17 h. Unlike all other populations studied, a high-latitude population from 70°N ('Alta') had an obligatory vernalization requirement. Although flowering and fruiting in its native Subarctic environment and after overwintering in the field in south Norway, this population did not flower in the laboratory in the absence of vernalization, even with 10 or 15 weeks of exposure to SD at 9°C. Flowering performance in the field likewise indicated a vernalization requirement of this high-latitude population.  相似文献   

6.
During cold acclimation of potato plantlets ( Solanum commersonii Dun, PI 458317), there are two transitory increases in free ABA content corresponding to a three-fold increase on the 2nd day and a five-fold increase on the 6th day (Ryu and Li 1993). During this period, plantlets increased in cold hardiness from −5°C (killing temperature, control grown at 22/18°C, day/night) to −10°C by the 7th day of exposure to 4/2°C (day/night). This increase in free ABA was not found when cycloheximide (CHI), an inhibitor of cytoplasmic protein synthesis, was added to the culture medium 6 h before exposure to low temperatures. Plantlets treated with CHI did not acclimate to cold, maintaining a hardiness level (−5°C) similar to that of the 22/18°C-grown plantlets. When the CHI-treated plantlets were exposed to low temperatures for 3 days, transferred to CHI-free culture medium and grown at low temperatures, the plantlets showed a transitory increase in free ABA 2 days later. This increase was followed by the development of cold hardiness (−8°C). Application of CHI to the culture medium after 3 days of cold acclimation, when the first ABA peak and a partial development of cold hardiness (−8°C) had occurred, blocked the second transitory increase in free ABA and resulted in no further development of cold hardiness. These results suggest that de novo synthesis of proteins is required for these transitory increases in free ABA during cold acclimation of potato plantlets.  相似文献   

7.
Picea sitchensis (Bong.) Carr. seedlings were exposed to SO2, NO2 and SO2+ NO2 during dormancy in controlled environments, and were taken to night temperatures of 4, 0, −5, −10 and −15 °C in a freezer. Conditions in the freezer were carefully monitored during the low–temperature treatments. In two experiments, different photoenvironments and temperature regimes were imposed prior to the cold treatments, and different effects were observed. In the first, only limited frost hardiness was achieved and night temperatures of −15 °C were lethal. Temperatures of −5 and − 10 °C led to poor survival of lateral buds, particularly in plants exposed to 45 ppb SO2. The poor bud break in plants exposed to SO2 and to − 5 °C resulted in a loss of the effectiveness of this temperature as a chill requirement. Pressure-volume analysis showed that the shoots of plants exposed to NO2 had greater elasticity (lower elastic moduli, e), so that loss of turgor occurred at lower relative water contents. In contrast, a hardening period (2 weeks in night/day temperatures of 3/10 °C and 8 h days at 50 μmol m−2 s−1 PAR) gave decreased elasticity and lower solute potentials of spruce shoots. In the second experiment, exposure to 30 ppb SO2 and SO2+ NO2 led to slight, but consistent, increases in frost injury to the needles of plants frozen to − 5 and − 10 °C. The results suggest that the main interaction of low temperatures and winter pollutants may be on bud survival rather than on needle damage, but that effects are subtle, only occurring with certain combinations of pollutant dose and cold treatment.  相似文献   

8.
Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol m-2 s-1 photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000 micromol mol-1) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.  相似文献   

9.
Flowering requirements in Bromus inermis, a short-long-day plant   总被引:3,自引:0,他引:3  
Smooth bromegrass plants ( Bromus inermis Leyss.) have a dual photoperiodic requirement for flowering. At temperatures ranging from 6 to 24°C, short days (SD) are necessary for primary induction while a transition to long days (LD) is required for initiation of flower primordia, culm elongation and flower development (secondary induction). Critical photoperiods for primary induction (50% flowering) were 13.5 h (15°C) and 12 h (24°C) in the American cv. Manchar and 14.5 and 13 h, respectively, in the Norwegian cv. Löfar. For the secondary induction the respective critical photoperiods were 14 and 15 h in 'Manchar' and 16 and 17.5 h in 'Löar', which also appeared to be better adapted to low temperatures. Low temperature vernalization in LD for up to 16 weeks at 3°C was unable to cause primary induction and temperatures below 12°C also strongly reduced the SD effect. At optimum temperature (15-2TC) 4 to 6 weeks of 8-10 h SD treatments were needed for optimal primary induction effect. A minimum of 8 LD cycles of 24 h were required for complete secondary induction in 'Manchar', while more than 16 cycles were needed in 'Löfar'. Seedlings grown in SD developed a rosette type of growth with shoots growing in a decumbent position, while those in LD grew upright and formed elongated vegetative culms. Rate of leaf initiation was enhanced by about 60% by LD while tillering was promoted by SD.  相似文献   

10.
Watanabe M 《Cryobiology》2000,40(4):294-301
Effects of photoperiod and temperature on the development and cold hardiness were investigated in larvae of Hypera punctata. At a relatively low temperature (15 degrees C), the larvae fed less and developed more slowly under a 12L:12D (SD) photoperiod than under a 16L:8D photoperiod (LD). SD larvae had lower gut weight against the whole body weight and lower supercooling point (SCP) than the LD counterparts for the same instar and same body weight. This was because the larval SCP is markedly affected by the quantity of the gut content. Laboratory experiments indicated that the low temperature mortality of this larvae occurred mainly due to freezing irrespective of the photoperiod and temperature, suggesting that the lower lethal temperature (LLT) depends on the supercooling ability of larvae. The SD larvae tended to have a lower SCP and hence a lower LLT than the LD counterparts at 15 or 10 degrees C, unlike at 20 degrees C. Thus, the slower larval development under SD conditions at relatively low temperatures may prevent larvae from reaching the later instar, which have a higher SCP and thus less cold tolerance, during the coldest season. The suppressed feeding activity under SD conditions would lower the SCP, thereby reducing the possibility of lethal tissue freezing. Such a photoperiodic and thermal regulation of the larval development and the supercooling ability appear to represent adaptive mechanisms for winter survival in this beetle.  相似文献   

11.
The relationship between freezable water and cold hardiness during acclimation was studied using vegetative buds from several apple ( Malus domestica Borkh) cultivars and from one saskatoonberry ( Amelanchier alnifolia Nutt. cv. Smoky) cultivar. According to leakage data and visual assessments of cortical browning, vegetative buds of all cultivars were most tolerant to subfreezing temperatures in January. The hardy condition was also associated with maximum tolerance to desiccation. Qualitative features of freezing exotherms (number of peaks and temperature of the transition) were not correlated with the hardy condition in the tissues. However, the amount of unfrozen water, determined by quantifying the energy of the exotherms, increased with increasing hardiness. In buds that survived exposure to −45°C, freezing reduced the intracellular water content, but only to levels above the critical moisture content for desiccation damage. In buds that did not survive exposure to −45°C, freezing reduced the water content to levels equal to or less than the critical moisture content for desiccation damage. These observations suggest that the freezing of water in nonhardy tissue dried the tissue to moisture levels at which severe dehydration damage occurred. It appears that acclimation of vegetative apple buds involves at least two processes: (1) an increase in tolerance to dehydration and (2) an increase in the level of unfreezable water.  相似文献   

12.
1 Frost resistance of Fagus crenata (Siebold's beech) and Betula ermanii (Japanese mountain birch) was investigated with respect to the species' altitudinal distribution on the Pacific slope of Mt. Fuji from 1996 to 1997. Flint's Index of Injury, which is based on electrolyte leakage from freeze-injured tissue, was used to assess frost hardiness of shoots produced in the previous growing season.
2 Fagus crenata is found on the lower slopes (700–1600 m a.s.l.). Mid- to late November hardening of shoots was enhanced, midwinter damage below −30 °C reduced and dehardening delayed nearer the upper limit. To here temperatures began to rise at least 3 weeks before dehardening began. Shade crown shoots were more susceptible to deep-freeze damage than light crown shoots. If the ultimate upper distribution limit was determined by frost hardiness, F. crenata would be expected to occur up to 1800 m altitude.
3 Betula ermanii is found between 1600 m and 2800 m, and intensive hardening occurred at all altitudes during the second half of October. Frost hardiness increased considerably with altitude up to the forest limit, where frost acclimation preceded the temperature decline by 2 weeks. Once maximum frost resistance had been attained freezing to −47 °C failed to cause tissue injury. Dehardening began slightly later at the tree line, but the time–course was the same at all altitudes. Main and lateral shoots did not differ in frost hardiness.
4 Comparison of monthly air temperature minima over the past 66 years with the course of frost resistance showed that F. crenata and B. ermanii found on the Pacific slope of Mt. Fuji were unlikely to suffer damage by frost.
5 The observed uppermost distribution limit for B. ermanii at 2800 m altitude on Mt. Fuji is considered both with our observations and with previous hypotheses.  相似文献   

13.
Effects of photoperiod and temperature on the development and cold hardiness were investigated in larvae of Hypera punctata. At a relatively low temperature (15°C), the larvae fed less and developed more slowly under a 12L:12D (SD) photoperiod than under a 16L:8D photoperiod (LD). SD larvae had lower gut weight against the whole body weight and lower supercooling point (SCP) than the LD counterparts for the same instar and same body weight. This was because the larval SCP is markedly affected by the quantity of the gut content. Laboratory experiments indicated that the low temperature mortality of this larvae occurred mainly due to freezing irrespective of the photoperiod and temperature, suggesting that the lower lethal temperature (LLT) depends on the supercooling ability of larvae. The SD larvae tended to have a lower SCP and hence a lower LLT than the LD counterparts at 15 or 10°C, unlike at 20°C. Thus, the slower larval development under SD conditions at relatively low temperatures may prevent larvae from reaching the later instar, which have a higher SCP and thus less cold tolerance, during the coldest season. The suppressed feeding activity under SD conditions would lower the SCP, thereby reducing the possibility of lethal tissue freezing. Such a photoperiodic and thermal regulation of the larval development and the supercooling ability appear to represent adaptive mechanisms for winter survival in this beetle.  相似文献   

14.
Root growth, development and frost resistance were examined in winter rye ( Secale cereale L. cv. Puma) plants grown under 6 combinations of temperature and photoperiod (20/16°C or 5/3°C, day/night; 8, 16- or 24-h days). Overall root system growth is influenced by the interaction of temperature and photoperiod. Maximum shoot growth occurs at a 24-h photoperiod in 20°C plants and at a 16-h photoperiod in 5°C plants, and is correlated in both treatments with a high root:shoot ratio. Frost resistance of rye roots is affected by short photoperiods in 2 ways. First, short photoperiod and low temperature delay production of new adventitious roots so that newly developing roots are not exposed to freezing temperatures. Second, short photoperiod alone can induce several degrees of frost tolerance in existing roots during the lag phase of growth. Low temperature alone does not decrease the rate of dry weight accumulation in rye root systems, but cold temperature does retard developmental processes within the roots. Rye roots grown at 5°C develop first order lateral roots, differentiate metaxylem vessels and suberize endodermal cell walls more slowly than roots grown at 20°C.  相似文献   

15.
Germination responses of the seeds of Amaranthus retroflexusL. were affected by the photoperiod, temperature, and levelof solar radiation experienced by their parent plants. Seedsfrom parents grown continuously in short days (SD, 8 h) lostpost-harvest dormancy more rapidly and had a higher dark germination,as well as a greater responsiveness (at 30?C) to pretreatmentsat low temperature (5 or 10?C) and to short illuminations, thanseeds from parents grown continuously in long days (LD, 16 h).Dark germination and responsiveness of the seeds to promotivetreatments were both higher when their parents were transferredat flowering from LD to SD than when grown continuously in LD.These responses were lower when their parents were similarlytransferred from SD to LD than when grown continuously in SD.The promotive effects of parental post-flowering SD on darkgermination (at 30?C) were enhanced by reduction of parentaltemperature (from 27/22?C to 22/17?C), but the responsivenessof the seeds to low temperature pretreatment was reduced. Inflorescencesdeveloping in LD produced seed with higher germinability whenfloweringwas not induced (LD throughout) than when it was induced (eitherby SD till flowering, or by three SD cycles when 4–5 leavesappeared). Reduced levels of solar radiation had opposite effectsin the different parental photoperiods: dark germination andthe responsiveness to low temperature pretreatments were reducedin LD, but were increased in SD. Differences in the germination responses resulting from differencesin the parental environment could not be correlated with differencesin seed coat thickness or seed dry weight.  相似文献   

16.
Effects of climatic warming on cold hardiness were investigated for some northern woody plants. In the first experiment, seedlings of Norway spruce ( Picea abies [L.] Karst.), Scots pine ( Pinus sylvestris L.) and lodgepole pine ( Pinus contorta Dougl. var. latifolia Engelm.) were exposed to naturally fluctuating temperatures averaging −6°C (ambient) and 0°C (elevated) for 16 weeks in midwinter before they were thawed and re-saturated with water. In lodgepole pine, needle sugar concentrations had decreased by 15%, and the temperature needed to induce 10% injury to needles in terms of electrolyte leakage had increased by 6°C following treatment to elevated as compared with control temperatures. In contrast, Norway spruce and Scots pine showed no effects. The lack of an effect for Scots pine was ascribed to seedlings containing unusually large energy reserves that buffered respiratory expenditure of sugars. A strong, linear relationship between levels of cold hardiness, assessed by the electrolyte leakage method, and sugars was found when combining data from this and previous, similar experiments. In the second experiment, the evergreen dwarf shrub Empetrum hermaphroditum Hagerup was analysed for leaf cold hardiness, using the electrolyte leakage method, and sugar concentrations in late spring and late autumn during the third year of a warming experiment in a subarctic dwarf shrub community. The objective was to test the hypothesis that warming in the growing season alters hardening/dehardening cycles by increasing soil nitrogen mineralization and plant growth. Data found, however, suggested that cold hardening/dehardening cycles were unaffected by warming.  相似文献   

17.
Kohn H  Levitt J 《Plant physiology》1966,41(5):792-796
Hardening of SD (8 and 12 hrs) and LD (18- and 24-hr photoperiods) cabbage plants in stages at temperatures starting with + 5° and ending with − 3° led to the following changes:

Soluble protein plus nonprotein N showed a net increase only in the SD plants. In both SD and LD plants, it decreased to a minimum toward the end of the first stage of hardening, increased to a maximum in the second stage. The degree of this change was proportional to the photoperiod. These changes were mainly due to the proteins.

As in previous investigations, SH content rose during the first 1 to 2 weeks, but only in the SD plants. This rise was primarily due to the protein fraction. After the first 1 to 2 weeks both SD and LD plants showed a decrease in SH content, most pronouncedly during the second stage of hardening.

Nonprotein SH content was very low and decreased during hardening in both SD and LD plants. Nonprotein SS increased during the first stage of hardening. Total nonprotein SH+2SS rose to a maximum during the first stage of hardening, paralleling both osmotic potential and hardiness. During the second stage the total decreased, in spite of the rise in hardiness. These results held true for both SD and LD plants.

These results are all explainable on the basis of the SHSS theory of frost resistance.

  相似文献   

18.
Potato (Solanum tuberosum L.) plants were grown under long days(LD) of 18 h before a subset of the plants was transferred to10-h photosynthetic periods with either a dark night (SD) oran 8-h dim photoperiod extension with incandescent lamps (DE).Temperature was constant at 21 °C. Leaves were sampled atthe beginning and end of the high density light period for starchanalyses. Potato leaves accumulated starch more rapidly underSD than under LD; and this difference continued after a secondmajor sink, the tuber, began to develop. Starch accumulationover 10 h in SD leaves was three times higher than in LD leaves,even after 17 d of treatment. By this time SD gave higher wholeplant relative growth rates than LD, and the tuber mass of SDplants exceeded 30% of their total plant biomass. The DE treatmentresulted in starch accumulation intermediate to the LD and SDtreatments. Genotypes likewise differed: the earlier genotype,more strongly induced to tuberize, had higher leaf starch accumulationthan the later genotype. The effects of photoperiod and genotypewere also present when potatoes were grown at 27 °C, a temperatureunfavourable for tuberization under LD. Thus the formation ofa strong tuber sink was consistently associated with more rapidleaf starch accumulation. Potato, Solanum tuberosum L., cv. Norchip, photoperiod, temperature, genotype, starch accumulation, partitionin  相似文献   

19.
Abstract. 1. For many species of insect, cold hardiness is an important trait that enables a population to develop in the next season and to extend its range. To elucidate the role of cold hardiness of the migratory locust Locusta migratoria L. in its outbreak and distribution areas, egg cold hardiness was examined in locusts derived from four locations from latitude 18°23'N to latitude 41°10'N in eastern China.
2. The supercooling points of eggs from different geographic populations did not differ significantly for the first development stage, with an average ± SE of −24.5 ± 0.51 °C, or for the second stage, −22.06 ± 0.68 °C, however there was a significant difference for the embryonic development phase among the four geographical populations. The egg supercooling point increased gradually from neonatal egg to old egg; eggs prior to hatching always had a much higher supercooling point.
3. Comparisons of the cold hardiness of four populations were carried out by validating the close correlation between latitude and the effects of cold on hatching, low lethal temperature (Ltemp50), and low lethal time (Ltime50). There were significant differences among the four populations; the northern population was more cold hardy than the southern population, and the two mid-latitude populations were intermediately cold hardy.
4. The cold hardiness of all populations was enhanced to various degrees by short-term cold acclimation at 0 °C and 5 °C. For most populations, a 2-day acclimation period seemed to be optimal.  相似文献   

20.
The critical temperature for primary induction of flowering in two Norwegian eco-types of meadow foxtail ( Alopecurus pratensis L.) was about 21°C, with 6 weeks induction period. Inflorescence primordia were initiated with increasing effectiveness as the temperature was reduced below this level in both short days (SD) and long days (LD), although SD was the more effective photoperiod at all temperatures above 6°C. The degree of primary induction was closely negatively correlated with the length of basal leaves. Culm elongation and heading (secondary induction) were promoted by LD and high temperature and inhibited by the combination of SD and low temperature. The relationship between SD primary induction and vernalization is discussed in the light of these and other results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号