首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Osmotic adjustment (OA) was previously demonstrated to be an important adaptive mechanism of drought tolerance in cereals. In order to determine which genomic regions are involved in OA variation, 187 barley (Hordeum vulgare L.) recombinant inbred lines (RILs) derived from a cross between Tadmor (drought tolerant) and Er/Apm (susceptible) were studied in a growth chamber for their OA capacity (through correlated traits and by calculation), at an early growth stage and under two water treatments (soil moisture of 14% and 100% of field capacity). The continuous distribution of the traits and their broad-sense line heritabilities, ranging from 0.04 to 0.44, indicated that OA and related traits should have a polygenic nature. A subset of 167 RILs were also genotyped using 78 RFLP, 32 RAPD and three morphological markers and a linkage map was constructed. Despite strong environmental effects acting on the traits, interval mapping and single-marker ANOVA allowed the detection of three QTLs for relative water content (RWC), four QTLs for osmotic potential (ψπ), two QTLs of osmotic potential at full turgor (ψπ100) and one QTL for osmotic adjustment at a soil moisture of 14% field capacity. For the irrigated treatment, only two QTLs were detected: one for RWC and one for ψπ100. Two chromosomal regions were involved in several OA-related trait variations and could be considered as regions controlling OA; these were present on chromosome 1 (7H) and chromosome 6 (6H), whereas other regions were specific for one trait. No major QTL was found. However, the genomic region involved in OA-related traits on chromosome 1 (7H) in barley seemed to be conserved for OA variation among cereals. Epistatic effects, with or without additive effects, acted on the traits. Received: 15 July 1997 / Accepted: 29 October 1997  相似文献   

2.
Quantitative trait locus (QTL) analysis was carried out with 167 recombinant inbred lines (RILs) of barley derived from a cross between Tadmor and Er/Apm to identify the genomic regions controlling traits related to plant water status and osmotic adjustment (OA). The experiment was conducted in a growth chamber using a random incomplete block design (nine blocks). Relative water content (RWC) and leaf osmotic potential (ψπ) were measured at 100% and 14% of the field capacity on 105 RILs in each block. In addition, the water-soluble carbohydrate concentration (WSC) was measured in the four first-blocks. The leaf osmotic potential at full turgor (ψπ100), the water-soluble carbohydrate concentration at full turgor (WSC100), and also OA, the accumulation of water-soluble carbohydrates (dWSC100), the contribution of a change in water content to OA (CWC) and of the net solute accumulation to OA (SA) have also been calculated. In a previous paper (Teulat et al. 1998), 12 QTLs were identified for RWC, ψπ, ψπ100 and OA with adjusted means (block effects and pot-within-block effects fixed) with an incomplete genetic map. In the present paper, a more-saturated and improved map is described. A new QTL analysis as been performed with adjusted means. The new QTLs identified for previous evaluated traits, as well as the QTLs for the new traits, are presented. Eight additional regions (22 QTLs) were identified which increased to 13 the total number of chromosomal regions (32 QTLs) controlling traits related to plant water status and/or osmotic adjustment in this barley genetic background. The results emphasise the value of the experimental design employed for the evaluation of traits difficult to assess in genetic studies. The putative target regions for drought-tolerance improvement are discussed combining arguments on the consistency of QTLs and, when possible, the physiological value of QTLs (trait relevance, syntenic relationships and clustering of QTLs). Received: 8 March 2000 / Accepted: 18 October 2000  相似文献   

3.
Genetic diversity of 70 Mediterranean lentil (Lens culinaris ssp. culinaris Medicus) landraces was assessed using simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). These landraces were also assessed for variation in root and shoot traits and drought tolerance as estimated by relative water content (RWC), water losing rate (WLR) and wilting score (WS). Genetic diversity and clear differentiation of Moroccan landraces from those from northern Mediterranean regions (Italy, Turkey and Greece) were found. High genetic variation in root and shoot traits and traits related to drought tolerance was also observed. No relationship was found between drought tolerance of landraces and their geographic origin. Landraces with higher dry root biomass, chlorophyll content and root–shoot ratio were drought tolerant as evidenced by higher RWC and lower WLR and wilting severity. Kruskal–Wallis non-parametric test (K-W) was used to find SSRs and AFLPs associated with RWC, WLR and WS. Regression analysis showed six SSR and AFLP alleles explaining the highest phenotypic variation of RWC, WLR and WS (ranging from 21 to 50 % for SSRs and from 14 to 33 % for AFLPs). Functional genetic diversity analysis showed relationships between drought response of landraces and linked SSR and AFLP alleles to RWC, WLR and WS according to K-W test using canonical discriminant analysis. Our results confirm the feasibility of using association mapping to find DNA markers associated with drought tolerance in larger numbers of lentil landraces.  相似文献   

4.
5.
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. Such changes may be population-specific or, alternatively, may involve parallel evolution of the same genomic region in multiple populations, if that region contains genes or co-adapted gene complexes affecting the selected trait(s). Both quantitative and population genetic approaches have identified associations between specific genomic regions and the anadromous (steelhead) and resident (rainbow trout) life-history strategies of Oncorhynchus mykiss. Here, we use genotype data from 95 single nucleotide polymorphisms and show that the distribution of variation in a large region of one chromosome, Omy5, is strongly associated with life-history differentiation in multiple above-barrier populations of rainbow trout and their anadromous steelhead ancestors. The associated loci are in strong linkage disequilibrium, suggesting the presence of a chromosomal inversion or other rearrangement limiting recombination. These results provide the first evidence of a common genomic basis for life-history variation in O. mykiss in a geographically diverse set of populations and extend our knowledge of the heritable basis of rapid adaptation of complex traits in novel habitats.  相似文献   

6.
Montooth KL  Marden JH  Clark AG 《Genetics》2003,165(2):623-635
We employed quantitative trait locus (QTL) mapping to dissect the genetic architecture of a hierarchy of functionally related physiological traits, including metabolic enzyme activity, metabolite storage, metabolic rate, and free-flight performance in recombinant inbred lines of Drosophila melanogaster. We identified QTL underlying variation in glycogen synthase, hexokinase, phosphoglucomutase, and trehalase activity. In each case variation mapped away from the enzyme-encoding loci, indicating that trans-acting regions of the genome are important sources of variation within the metabolic network. Individual QTL associated with variation in metabolic rate and flight performance explained between 9 and 35% of the phenotypic variance. Bayesian QTL analysis identified epistatic effects underlying variation in flight velocity, metabolic rate, glycogen content, and several metabolic enzyme activities. A region on the third chromosome was associated with expression of the glucose-6-phosphate branchpoint enzymes and with metabolic rate and flight performance. These genomic regions are of special interest as they may coordinately regulate components of energy metabolism with effects on whole-organism physiological performance. The complex biochemical network is encoded by an equally complex network of interacting genetic elements with potentially pleiotropic effects. This has important consequences for the evolution of performance traits that depend upon these metabolic networks.  相似文献   

7.
Identification of genomic regions affecting plant height in sorghum and maize   总被引:10,自引:0,他引:10  
The objective of this study was to use restriction fragment length polymorphisms (RFLPs) to determine the genetic location and effects of genomic regions controlling plant height in sorghum. F2 plants (152) from the cross CK60 x PI229828 were used. Genomic and cDNA clones (106) identified 111 loci distributed among ten linkage groups covering 1299 cM. Interval mapping identified four regions, each in a separate linkage group. These regions may correspond to loci (dw) previously identified by alleles with qualitative effects. Also, these regions identified in sorghum may be orthologous to those previously reported for plant height in maize. Gene effects and gene action varied among genomic regions. In each region, PI229828 alleles resulted in increased plant height. Each region accounted for 9.2–28.7% of the phenotypic variation. Positive, additive effects ranged from 15 to 32cm. Tallness was dominant or overdominant and conferred by alleles from PI229828 for three quantitative trait loci (QTL). At the fourth QTL, PI229828 contributed to increased plant height, but short stature was partially dominant. One digenic interaction was significant. The presence of a PI229828 allele at one region diminished the effects of the other region. A multiple model indicated that these four regions collectively accounted for 63.4% of the total phenotypic variation. The utility of this information for germplasm conversion through backcross breeding is discussed.Journal Paper No. J. 15649 of the Iowa Agriculture and Home Economic Experiment Station, Ames, Iowa. Project No. 3134  相似文献   

8.
Characterizing patterns of evolution of genetic and phenotypic divergence between incipient species is essential to understand how evolution of reproductive isolation proceeds. Hybrid zones are excellent for studying such processes, as they provide opportunities to assess trait variation in individuals with mixed genetic background and to quantify gene flow across different genomic regions. Here, we combine plumage, song, mtDNA and whole‐genome sequence data and analyze variation across a sympatric zone between the European and the Siberian chiffchaff (Phylloscopus collybita abietinus/tristis) to study how gene exchange between the lineages affects trait variation. Our results show that chiffchaff within the sympatric region show more extensive trait variation than allopatric birds, with a large proportion of individuals exhibiting intermediate phenotypic characters. The genomic differentiation between the subspecies is lower in sympatry than in allopatry and sympatric birds have a mix of genetic ancestry indicating extensive ongoing and past gene flow. Patterns of phenotypic and genetic variation also vary between regions within the hybrid zone, potentially reflecting differences in population densities, age of secondary contact, or differences in mate recognition or mate preference. The genomic data support the presence of two distinct genetic clades corresponding to allopatric abietinus and tristis and that genetic admixture is the force underlying trait variation in the sympatric region—the previously described subspecies (“fulvescens”) from the region is therefore not likely a distinct taxon. In addition, we conclude that subspecies identification based on appearance is uncertain as an individual with an apparently distinct phenotype can have a considerable proportion of the genome composed of mixed alleles, or even a major part of the genome introgressed from the other subspecies. Our results provide insights into the dynamics of admixture across subspecies boundaries and have implications for understanding speciation processes and for the identification of specific chiffchaff individuals based on phenotypic characters.  相似文献   

9.
Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.  相似文献   

10.
Multipoint analysis of human quantitative genetic variation.   总被引:38,自引:17,他引:21       下载免费PDF全文
A unique method of partitioning human quantitative genetic variation into effects due to specific chromosomal regions is presented. This method is based on estimating the proportion of genetic material, R, shared identical by descent (IBD) by sibling pairs in a specified chromosomal region, on the basis of their marker genotypes at a set of marker loci spanning the region. The mean and variance of the distribution of R conditional on IBD status and recombination pattern between two marker loci are derived as a function of the distance between the two loci. The distribution of the estimates of R is exemplified using data on 22 loci on chromosome 7. A method of using the estimated R values and observed values of a quantitative trait in a set of sibships to estimate the proportion of total genetic variance explained by loci in the region of interest is presented. Monte Carlo simulation techniques are used to show that this method is more powerful than existing methods of quantitative linkage analysis based on sib pairs. It is also shown through simulation studies that the proposed method is sensitive to genetic variation arising from both a single locus of large effect as well as from several loosely linked loci of moderate phenotypic effect.  相似文献   

11.
Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements.  相似文献   

12.
Drought stress is the major constraint to rice (Oryza sativa L.) production and yield stability in rainfed ecosystems. Identifying genomic regions contributing to drought resistance will help to develop rice cultivars suitable for rainfed regions through marker-assisted breeding. Quantitative trait loci (QTLs) linked to leaf epicuticular wax, physio-morphological and plant production traits under water stress and irrigated conditions were mapped in a doubled haploid (DH) line population from the cross CT9993-5-10-1-M/IR62266-42-6-2. The DH lines were subjected to water stress during anthesis. The DH lines showed significant variation for epicuticular wax (EW), physio-morphological and plant production traits under stress and irrigated conditions. A total of 19 QTLs were identified for the various traits under drought stress and irrigated conditions in the field, which individually explained 9.6%–65.6% of the phenotypic variation. A region EM15_10-ME8_4-R1394A-G2132 on chromosome 8 was identified for leaf EW and rate of water loss i.e., time taken to reach 70% RWC from excised leaves in rice lines subjected to drought stress. A large effect QTL (65.6%) was detected on chromosome 2 for harvest index under stress. QTLs identified for EW, rate of water loss from excised leaves and harvest index under stress in this study co-located with QTLs linked to shoot and root-related drought resistance traits in these rice lines and might be useful for rainfed rice improvement.  相似文献   

13.
Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.  相似文献   

14.
M L Farman  S A Leong 《Genetics》1998,150(3):1049-1058
The avrCO39 gene conferring avirulence toward rice cultivar CO39 was previously mapped to chromosome 1 of Magnaporthe grisea between cosegregating markers CH5-120H and 1.2H and marker 5-10-F. In the present study, this region of the chromosome was physically mapped using RecA-mediated Achilles'' cleavage. Cleavage of genomic DNA sequences within CH5-120H and 5-10-F liberated a 610-kb restriction fragment, representing the physical distance between these markers. Chromosome walking was initiated from both markers but was curtailed due to the presence of repetitive DNA sequences and the absence of overlapping clones in cosmid libraries representing several genome equivalents. These obstacles were overcome by directly subcloning the target region after release by Achilles'' cleavage and a contig spanning avrCO39 was thus assembled. Transformation of two cosmids into a virulent recipient strain conferred a cultivar-specific avirulence phenotype thus confirming the cloning of avrCO39. Meiotic crossover points were unevenly distributed across this chromosomal region and were clustered around the avrCO39 locus. A 14-fold variation in the relationship between genetic and physical distance was measured over the avrCO39 chromosomal region. Thus the poor correlation of physical to genetic distance previously observed in M. grisea appears to be manifested over relatively short distances.  相似文献   

15.
The Cannon lecture this year illustrates how knowledge of DNA sequences of complex living organisms is beginning to shape the landscape of physiology in the 21st century. Enormous challenges and opportunities now exist for physiologists to relate the galaxy of genes to normal and pathological functions. The first extensive genomic systems biology map for cardiovascular and renal function was completed last year as well as a new hypothesis-generating tool ("physiological profiling") that enables us to hypothesize relationships between specific genes responsible for the regulation of regulatory pathways. Techniques of chromosomal substitution (consomic and congenic rats) are beginning to confirm statistical results from linkage analysis studies, narrow the regions of genetic interest for positional cloning, and provide genetically well-defined control strains for physiological studies. Patterns of gene expression identified by microarray and mapping of expressed genes to chromosomal sites are adding to the understanding of systems physiology. The previously unimaginable goal of connecting approximately 36,000 genes to the complex functions of mammalian systems is indeed well underway.  相似文献   

16.
Durum wheat (Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5/Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites × years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTL×E interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.Communicated by P. Langridge  相似文献   

17.
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.  相似文献   

18.
Age at natural menopause may be used as parameter for evaluating the rate of ovarian aging. Environmental factors determine only a small part of the large variation in menopausal age. Studies have shown that genetic factors are likely to be involved in variation in menopausal age. To identify quantitative-trait loci for this trait, we performed a genomewide linkage study with age at natural menopause as a continuous quantitative phenotype in Dutch sister pairs, through use of a selective sampling scheme. A total of 165 families were ascertained using extreme selected sampling and were genotyped for 417 markers. Data were analyzed by Haseman-Elston regression and by an adjusted variance-components analysis. Subgroup analyses for early and late menopausal age were conducted by Haseman-Elston regression. In the adjusted variance-components analysis, 12 chromosomes had a LOD score of > or =1.0. Two chromosomal regions showed suggestive linkage: 9q21.3 (LOD score 2.6) and Xp21.3 (LOD score 3.1). Haseman-Elston regression showed rather similar locations of the peaks but yielded lower LOD scores. A permutation test to obtain empirical P values resulted in a significant peak on the X chromosome. To our knowledge, this is the first study to attempt to identify loci responsible for variability in menopausal age and in which several chromosomal regions were identified with suggestive and significant linkage. Although the finding of the region on the X chromosome comes as no surprise, because of its widespread involvement in premature ovarian failure, the definition of which particular gene is involved is of great interest. The region on chromosome 9 deserves further consideration. Both findings require independent confirmation.  相似文献   

19.
Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.  相似文献   

20.
Studer AJ  Doebley JF 《Genetics》2011,188(3):673-681
Quantitative trait loci (QTL) mapping is a valuable tool for studying the genetic architecture of trait variation. Despite the large number of QTL studies reported in the literature, the identified QTL are rarely mapped to the underlying genes and it is usually unclear whether a QTL corresponds to one or multiple linked genes. Similarly, when QTL for several traits colocalize, it is usually unclear whether this is due to the pleiotropic action of a single gene or multiple linked genes, each affecting one trait. The domestication gene teosinte branched1 (tb1) was previously identified as a major domestication QTL with large effects on the differences in plant and ear architecture between maize and teosinte. Here we present the results of two experiments that were performed to determine whether the single gene tb1 explains all trait variation for its genomic region or whether the domestication QTL at tb1 fractionates into multiple linked QTL. For traits measuring plant architecture, we detected only one QTL per trait and these QTL all mapped to tb1. These results indicate that tb1 is the sole gene for plant architecture traits that segregates in our QTL mapping populations. For most traits related to ear morphology, we detected multiple QTL per trait in the tb1 genomic region, including a large effect QTL at tb1 itself plus one or two additional linked QTL. tb1 is epistatic to two of these additional QTL for ear traits. Overall, these results provide examples for both a major QTL that maps to a single gene, as well as a case in which a QTL fractionates into multiple linked QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号