首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary pulmonary hypertension (PPH) is defined clinically by sustained elevation of pulmonary arterial pressure without a demonstrable cause, and is a progressive, often-fatal disease. PPH can be associated with ingestion of appetite suppressants, human immunodeficiency virus infection and certain autoimmune diseases. Familial PPH is known to account for 6% of all cases. Mutations in the gene encoding the bone morphogenetic protein (BMP) type II receptor have been identified in 72% of affected families and 26% of apparently sporadic cases. BMPs are members of the transforming growth factor b superfamily and affect intracellular signalling via Smads and mitogen-activated protein kinases. Evidence supports a 'two-hit' hypothesis in which PPH is triggered by accumulation of genetic and environmental insults in a susceptible individual. Elucidation of the precise molecular and cellular mechanisms underlying PPH will provide a powerful basis for the development of novel therapeutic strategies in the treatment of this devastating condition.  相似文献   

2.
Pulmonary vascular medial hypertrophy in primary pulmonary hypertension (PPH) is mainly caused by increased proliferation and decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Mutations of the bone morphogenetic protein (BMP) receptor type II (BMP-RII) gene have been implicated in patients with familial and sporadic PPH. The objective of this study was to elucidate the apoptotic effects of BMPs on normal human PASMCs and to examine whether BMP-induced effects are altered in PASMCs from PPH patients. Using RT-PCR, we detected six isoforms of BMPs (BMP-1 through -6) and three subunits of BMP receptors (BMP-RIa, -RIb, and -RII) in PASMCs. Treatment of normal PASMCs with BMP-2 or -7 (100-200 nM, 24-48 h) markedly increased the percentage of cells undergoing apoptosis. The BMP-2-mediated apoptosis in normal PASMCs was associated with a transient activation or phosphorylation of Smad1 and a marked downregulation of the antiapoptotic protein Bcl-2. In PASMCs from PPH patients, the BMP-2- or BMP-7-induced apoptosis was significantly inhibited compared with PASMCs from patients with secondary pulmonary hypertension. These results suggest that the antiproliferative effect of BMPs is partially due to induction of PASMC apoptosis, which serves as a critical mechanism to maintain normal cell number in the pulmonary vasculature. Inhibition of BMP-induced PASMC apoptosis in PPH patients may play an important role in the development of pulmonary vascular medial hypertrophy in these patients.  相似文献   

3.
Previously, we reported that in the isolated perfused rabbit lung, red blood cells (RBCs) obtained from either rabbits or healthy humans were a required component of the perfusate to unmask evidence of nitric oxide (NO) participation in regulation of the pulmonary circulation. In addition, we found that mechanical deformation of rabbit and healthy human RBCs released ATP, a known agonist for enhanced NO synthesis. In contrast, RBCs obtained from patients with cystic fibrosis (CF) did not release ATP in response to mechanical deformation. The coexistence of airway disease and alveolar hypoxia in patients with CF precluded the drawing of conclusions relating a defect in RBC ATP release with the pulmonary hypertension associated with CF. Airway disease and alveolar hypoxia are not, however, features of primary pulmonary hypertension (PPH), a human condition of unknown etiology. We postulated that a defect in NO generation might contribute to the increased pulmonary vascular resistance in PPH, and as a first step, we hypothesized that RBCs obtained from patients with PPH would not release ATP. In contrast to RBCs of healthy humans, when RBCs of PPH patients were passed through filters (average pore size 12, 8, or 5 microm), ATP was not released and the RBCs exhibited reduced deformability. Moreover, when incubated with the active cAMP analogue, Sp-cAMP (100 microM), an activator of the CF transmembrane conductance regulator, ATP was not released. These results demonstrate that RBCs obtained from patients with PPH fail to release ATP whether the stimulus is mechanical or pharmacological. Thus, failure of RBCs to release ATP in patients with PPH might be a major pathogenetic factor that accounts for the heretofore unknown etiology of their pulmonary hypertension.  相似文献   

4.
Adrenomedullin in the treatment of pulmonary hypertension   总被引:10,自引:0,他引:10  
Nagaya N  Kangawa K 《Peptides》2004,25(11):2013-2018
Adrenomedullin (AM) is a potent, long-lasting pulmonary vasodilator peptide. Plasma AM level is elevated in patients with primary pulmonary hypertension (PPH), and circulating AM is partially metabolized in the lungs. These findings suggest that AM plays an important role in the regulation of pulmonary vascular tone and vascular remodeling. We have demonstrated the effects of three types of AM delivery systems: intravenous administration, inhalation, and cell-based gene transfer. Despite endogenous production of AM, intravenously administered AM at a pharmacologic level decreased pulmonary vascular resistance in patients with PPH. Inhalation of AM improved hemodynamics with pulmonary selectivity and exercise capacity in patients with PPH. Cell-based AM gene transfer ameliorated pulmonary hypertension rats. These results suggest that additional administration of AM may be effective in patients with pulmonary hypertension. AM may be a promising endogenous peptide for the treatment of pulmonary hypertension.  相似文献   

5.
Primary pulmonary hypertension (PPH), an often fatal disorder, is characterized by sustained elevation of pulmonary artery pressure of unknown cause. In its familial form (FPPH), the disorder segregates as an autosomal dominant and displays markedly reduced penetrance. A gene for FPPH was previously localized to a 25-cM interval on the long arm of chromosome 2 (2q31-q33). We now report a complete yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC)/P1 artificial chromosome contig (PAC), assembled by STS content mapping, across a newly identified minimum nonrecombinant interval containing the gene designated PPH1. The physical map has served to establish polymorphic marker order unequivocally, enabling the establishment of detailed haplotypes for the region. Together with the identification of novel recombination events in affected individuals from six newly ascertained kindreds, these data have allowed the significant reduction of the minimum PPH1 critical interval to a 4.8-cM region. The region, flanked by the polymorphic markers D2S115 (centromeric) and D2S1384 (telomeric), corresponds to a minimum physical distance of 5.8 Mb at 2q33. Numerous expressed sequence tags and known genes were placed on the YAC/BAC contig spanning the PPH1 gene critical region.  相似文献   

6.
Primary pulmonary hypertension (PPH) is a potentially lethal disorder, because the elevation of the pulmonary arterial pressure may result in right-heart failure. Histologically, the disorder is characterized by proliferation of pulmonary-artery smooth muscle and endothelial cells, by intimal hyperplasia, and by in situ thrombus formation. Heterozygous mutations within the bone morphogenetic protein type II receptor (BMPR-II) gene (BMPR2), of the transforming growth factor beta (TGF-beta) cell-signaling superfamily, have been identified in familial and sporadic cases of PPH. We report the molecular spectrum of BMPR2 mutations in 47 additional families with PPH and in three patients with sporadic PPH. Among the cohort of patients, we have identified 22 novel mutations, including 4 partial deletions, distributed throughout the BMPR2 gene. The majority (58%) of mutations are predicted to lead to a premature termination codon. We have also investigated the functional impact and genotype-phenotype relationships, to elucidate the mechanisms contributing to pathogenesis of this important vascular disease. In vitro expression analysis demonstrated loss of BMPR-II function for a number of the identified mutations. These data support the suggestion that haploinsufficiency represents the common molecular mechanism in PPH. Marked variability of the age at onset of disease was observed both within and between families. Taken together, these studies illustrate the considerable heterogeneity of BMPR2 mutations that cause PPH, and they strongly suggest that additional factors, genetic and/or environmental, may be required for the development of the clinical phenotype.  相似文献   

7.
Hypoxia-induced pulmonary hypertension is a life-threatening disease arising from a progressive increase in pulmonary vascular resistance, irreversible pulmonary vascular remodeling and resulting in right ventricular failure. Recent studies suggested that pulmonary artery smooth muscle cell proliferation and migration played an important role in the pathogenesis of hypoxia-induced pulmonary hypertension. However, the mechanisms of hypoxia-induced pulmonary hypertension are complicated and largely unclear. In this study, we discovered that lncRNA MEG3 was down-regulated in human pulmonary artery smooth muscle cell in hypoxia, and inhibition of MEG3 promoted the cell proliferation and cell migration in both normal and hypoxia condition. Further study demonstrated that MEG3 exerted its function via regulation of miR-21 expression in both normal and hypoxia condition. In addition, we displayed the modulation of PTEN by miR-21 and their role in hypoxia. Ultimately, our study illustrated that MEG3 exerts its role via miR-21/PTEN axis in human pulmonary artery smooth muscle cell under both normal and hypoxia conditions.  相似文献   

8.
Several recent papers have shown that both familial primary pulmonary hypertension (FPPH) and sporadic primary pulmonary hypertension (PPH) may have a common etiology that is associated with the inheritance and/or spontaneous development of germline mutations in the bone morphogenetic protein receptor (BMPR) type II gene. Because BMPR-II is a ubiquitously expressed receptor for a family of secreted growth factors known as the bone morphogenetic proteins (BMPs), these findings suggest that BMPs play an important role in the maintenance of normal pulmonary vascular physiology. In the present commentary we discuss the implications of these findings in the context of BMP receptor biology, and relate these data to the genetics and pulmonary pathophysiology of patients with PPH.  相似文献   

9.
Chronic pulmonary thromboembolic disease is an important cause of severe pulmonary hypertension, and as such is associated with significant morbidity and mortality. The prognosis of this condition reflects the degree of associated right ventricular dysfunction, with predictable mortality related to the severity of the underlying pulmonary hypertension. Left untreated, the prognosis is poor. Pulmonary endarterectomy is the treatment of choice to relieve pulmonary artery obstruction in patients with chronic thromboembolic pulmonary hypertension and has been remarkably successful. Advances in surgical techniques along with the introduction of pulmonary hypertension-specific medication provide therapeutic options for the majority of patients afflicted with the disease. However, a substantial number of patients are not candidates for pulmonary endarterectomy due to either distal pulmonary vascular obstruction or significant comorbidities. Therefore, careful selection of surgical candidates in expert centres is paramount. The current review focuses on the diagnostic approach to chronic thromboembolic pulmonary hypertension and the available surgical and medical therapeutic options.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-014-0592-2) contains supplementary material, which is available to authorized users.  相似文献   

10.
Acute pulmonary hypertension (PH) may arise with or without an increase in vascular smooth muscle (VSM) tone. Our objective was to determine how VSM activation affects both the conduit (CF) and wall buffering (BF) functions of the pulmonary artery (PA) during acute PH states. PA instantaneous flow, pressure, and diameter of six sheep were recorded during normal pressure (CTL) and different states of acute PH: 1) passively induced by PA mechanical occlusion (PPH); 2) actively induced by intravenous administration of phenylephrine (APH); and 3) a combination of both (APPH). To evaluate the direct effect of VSM activation, isobaric (PPH vs. APH) and isometric (CTL vs. APPH) analyses were performed. We calculated the local BF from the elastic (EPD) and viscous (etaPD) indexes as etaPD/EPD and the characteristic impedance (ZC) from pressure and flow to evaluate CF as 1/ZC. We also calculated the absolute and normalized cross-sectional pulsatility (PCS and NPCS, respectively), the dynamic compliance (CDYN), the cross-sectional distensibility (DCS), and the pressure-strain elastic modulus (EP). The isobaric analysis showed increase of CF, BF, and etaPD (P < 0.01) and decrease of EPD (P < 0.05) during APH in respect to PPH (concomitant with isobaric VSM activation-induced vasoconstriction, P < 0.01). The isometric analysis showed increase of E(PD) and etaPD (P < 0.01), nonsignificant difference in BF (even in the presence of a significant mean PA pressure rise, from 14 (SD 6) to 25 (SD 8) mmHg, P < 0.01), and decrease in CF (P < 0.01) during APPH respect to CTL. Mechanical occlusions (PPH and APPH) reduced BF (P < 0.01) and increased EPD (P < 0.05) with regard to their previous steady states (CTL and APH). Nonsignificant differences were found in EPD between PPH and APPH. VSM activation (APH and APPH) increased etaPD (P < 0.01) respect to their previous passive states (CTL and PPH), but no significant differences were found within similar levels of VSM activation. In conclusion, VSM plays a relevant role in main pulmonary artery function during acute pulmonary hypertension, because isobaric vasoconstriction induced by VSM activation improves both BF and CF, mainly due to the increase in etaPD concomitant with the arterial compliance. CDYN and DCS were the more pertinent clinical indexes of arterial elasticity. Additionally, the etaPD-mediated preservation of the BF could be evaluated by the geometric related indexes (PCS and NPCS), which appear to be qualitative markers of arterial wall viscosity status.  相似文献   

11.
Primary pulmonary hypertension is a rare but deadly disease. Lungs extracted from PPH patients are deficient in endothelial nitric oxide synthase (eNOS), making the eNOS-null mouse a potentially useful model of the disease. To better understand the progression of pulmonary vascular remodeling in the congenital absence of eNOS, we induced pulmonary hypertension in eNOS-null mice using hypobaric hypoxia, and then quantified large artery structure and function in contralateral vessels. In particular, to assess structure we quantified diameter, wall thickness, and collagen, elastin and smooth muscle cell content; to quantify function we performed pressure-diameter tests. After remodeling, the pulmonary arteries had increased wall, collagen and elastin thicknesses compared to controls (P<0.05). The remodeled pulmonary arteries also had increased elastic moduli at low and high strains compared to controls (P<0.05). The increases in moduli at low and high strain correlated with increases in elastin and collagen thickness, respectively (P<0.05). These results provide insight into the mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS, and the coupled nature of these changes.  相似文献   

12.
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice develop more severe pulmonary hypertension after prolonged exposure to hypoxia without an associated increase in pulmonary vascular remodeling or proliferation compared with wild-type mice. This is associated with defective endothelial-dependent vasodilatation and enhanced vasoconstriction in isolated intrapulmonary artery preparations. In addition, there is a selective decrease in hypoxia-induced, BMP-dependent, endothelial nitric oxide synthase expression and Smad signaling in the intact lungs and in cultured pulmonary microvascular endothelial cells from Bmpr2 delta Ex2/+ mutant mice. These findings indicate that the pulmonary endothelium is a target of abnormal BMP signaling in Bmpr2 delta Ex2/+ mutant mice and suggest that endothelial dysfunction contributes to their increased susceptibility to hypoxic pulmonary hypertension.  相似文献   

13.
Although catheterization is the most accurate and sometimes the only adequate method of measuring pulmonary hypertension as an indication for mitral valvotomy in rheumatic heart disease, it is so costly and complex that simpler methods are desirable. Clinical evidence of pulmonary hypertension is least accurate; electrocardiography is confirmatory in half of all cases. Roentgenologic findings are more helpful; moderate or severe enlargement in the pulmonary arteries has been associated in 92 per cent of cases with resting systolic pressure of 50 to 90 mm. of mercury in the pulmonary artery. In cases in which there is little or no enlargement, hypertension may still be present and demonstrable only by catheterization. Other roentgen signs noted as helpful are abrupt narrowing of the large branches of the pulmonary artery in the middle and lower lobes, and the septal lines of Kerley.  相似文献   

14.
Although catheterization is the most accurate and sometimes the only adequate method of measuring pulmonary hypertension as an indication for mitral valvotomy in rheumatic heart disease, it is so costly and complex that simpler methods are desirable. Clinical evidence of pulmonary hypertension is least accurate; electrocardiography is confirmatory in half of all cases. Roentgenologic findings are more helpful; moderate or severe enlargement in the pulmonary arteries has been associated in 92 per cent of cases with resting systolic pressure of 50 to 90 mm. of mercury in the pulmonary artery. In cases in which there is little or no enlargement, hypertension may still be present and demonstrable only by catheterization. Other roentgen signs noted as helpful are abrupt narrowing of the large branches of the pulmonary artery in the middle and lower lobes, and the septal lines of Kerley.  相似文献   

15.
Pulmonary arterial hypertension (PAH), defined as group 1 of the World Heart Organisation (WHO) classification of pulmonary hypertension, is an uncommon disorder of the pulmonary vascular system. It is characterised by an increased pulmonary artery pressure, increased pulmonary vascular resistance and specific histological changes. It is a progressive disease finally resulting in right heart failure and premature death. Typical symptoms are dyspnoea at exercise, chest pain and syncope; furthermore clinical signs of right heart failure develop with disease progression. Echocardiography is the key investigation when pulmonary hypertension is suspected, but a reliable diagnosis of PAH and associated conditions requires an intense work-up including invasive measurement by right heart catheterisation. Treatment includes general measures and drugs targeting the pulmonary artery tone and vascular remodelling. This advanced medical therapy has significantly improved morbidity and mortality in patients with PAH in the last decade. Combinations of these drugs are indicated when treatment goals of disease stabilisation are not met. In patients refractory to medical therapy lung transplantation should be considered an option.  相似文献   

16.
Epoprostenol has improved the outcome of patients with primary pulmonary hypertension (PPH); however, its mechanism of action remains poorly understood. Isoprostanes are easily measured markers of oxidant stress and can activate platelets leading to increased thromboxane A2 (TxA2) production. We hypothesized that oxidant stress is associated with increased TxA2 synthesis and that epoprostenol decreases oxidant stress and TxA2 production in patients with PPH. Morning urine samples were obtained from 19 patients with PPH. We measured urinary metabolites of the isoprostane, 8-iso-PGF2alpha (F2-IsoP-M), and of TxA2 (Tx-M) before and after treatment with epoprostenol in patients with PPH. Mean (+/-SE) levels of F2-IsoP-M were elevated at baseline in our patients, 863 +/- 97 pg/mg creatinine. During treatment with epoprostenol, values decreased to 636 +/- 77 pg/mg creatinine (P = 0.011), and there was a strong correlation between the change in F2-IsoP-M and follow-up pulmonary vascular resistance (R2 = 0.69, P < 0.001). Tx-M levels were markedly elevated at baseline and were unchanged with therapy. These results indicate that oxidant stress decreases with epoprostenol therapy and is associated with hemodynamic and clinical improvement. The failure of Tx-M to decrease with therapy suggests that epoprostenol does not exert a beneficial effect through inhibition of TxA2 production in patients with PPH.  相似文献   

17.
Hypoxic pulmonary vasoconstriction is unique to pulmonary arteries and serves to match lung perfusion to ventilation. However, in disease states this process can promote hypoxic pulmonary hypertension. Hypoxic pulmonary vasoconstriction is associated with increased NADH levels in pulmonary artery smooth muscle and with intracellular Ca(2+) release from ryanodine-sensitive stores. Because cyclic ADP-ribose (cADPR) regulates ryanodine receptors and is synthesized from beta-NAD(+), we investigated the regulation by beta-NADH of cADPR synthesis and metabolism and the role of cADPR in hypoxic pulmonary vasoconstriction. Significantly higher rates of cADPR synthesis occurred in smooth muscle homogenates of pulmonary arteries, compared with homogenates of systemic arteries. When the beta-NAD(+):beta-NADH ratio was reduced, the net amount of cADPR accumulated increased. This was due, at least in part, to the inhibition of cADPR hydrolase by beta-NADH. Furthermore, hypoxia induced a 10-fold increase in cADPR levels in pulmonary artery smooth muscle, and a membrane-permeant cADPR antagonist, 8-bromo-cADPR, abolished hypoxic pulmonary vasoconstriction in pulmonary artery rings. We propose that the cellular redox state may be coupled via an increase in beta-NADH levels to enhanced cADPR synthesis, activation of ryanodine receptors, and sarcoplasmic reticulum Ca(2+) release. This redox-sensing pathway may offer new therapeutic targets for hypoxic pulmonary hypertension.  相似文献   

18.
Pulmonary arterial hypertension (PAH) is a rare but fatal condition in which raised pulmonary vascular resistance leads to right heart failure and death. Endothelin-1 is a potent endogenous vasoconstrictor, which is considered to be central to many of the events that lead to PAH, and is an important therapeutic target in the treatment of the condition. In many cases of PAH, the aetiology is unknown but inflammation is increasingly thought to play an important role and viruses have been implicated in the development of disease. The Toll Like Receptors (TLRs) play a key role in innate immune responses by initiating specific anti-bacterial and anti-viral defences in recognition of signature molecular motifs on the surface of invading pathogens. In this study, we set out to examine the expression of bacterial and viral TLRs in human pulmonary artery smooth muscle cells and to establish whether their activation could be relevant to PAH. We found that the viral TLR3 and bacterial TLRs 4 and 6 were most abundantly expressed in human pulmonary artery smooth muscle cells. Using specific TLR ligands, we found that activation of TLRs 3 and 4 resulted in IL-8 release by human pulmonary artery smooth muscle cells but that only TLR3 stimulation resulted in IP10 and endothelin-1 release. These data suggest that human pulmonary artery smooth muscle cells express significant levels of viral TLR3 and respond to its activation by releasing endothelin-1. This may have importance in understanding the association between viruses and the development of PAH.  相似文献   

19.
Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.  相似文献   

20.
Abnormal levels of pulmonary eicosanoids have been reported in infants with persistent pulmonary hypertension (PPH) and congenital diaphragmatic hernia (CDH). We hypothesized that a dysbalance of vasoconstrictive and vasodilatory eicosanoids is involved in PPH in CDH patients. The levels of several eicosanoids in lung homogenates and in bronchoalveolar lavage fluid of controls and rats with CDH were measured after caesarean section or spontaneous birth. In controls the concentration of the stable metabolite of prostacyclin (6-keto-PGF(1alpha)), thromboxane A(2) (TxB(2)), prostaglandin E(2) (PGE(2)), and leukotriene B(4) (LTB(4)) decreased after spontaneous birth. CDH pups showed respiratory insufficiency directly after birth. Their lungs had higher levels of 6- keto-PGF(1alpha), reflecting the pulmonary vasodilator prostacyclin (PGI(2)), than those of controls. We conclude that in CDH abnormal lung eicosanoid levels are present perinatally. The elevated levels of 6-keto-PGF(1alpha) in CDH may reflect a compensation mechanism for increased vascular resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号