首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Addition of an amphiphilic lipid, such as phosphatidylcholine (PC) species with two identical saturated chains or lysophosphatidylcholine (lysoPC) species with one saturated acyl chain of various lengths, into a suspension of intact human erythrocytes resulted in lipid incorporation into the erythrocytes membrane to produce echinocytes (crenated cells). The altered shape gradually reverted on incubation at 37 degrees C until the cells reassumed their normal disc shape. The rate of such recovery of shape increased with decreasing acyl chain length for both PC with C8-C12 acyl chains and lysoPC with a C14-C18 acyl chain, and was strongly influenced by incubation temperature. The identical rate of recovery of shape was observed for cells with normal, decreased or increased ATP content, implying that the metabolic state of the cell had no influence on the recovery process. Recovery of shape is therefore considered to be caused by translocation of the incorporated lipid molecules from the outer to the inner leaflet of the membrane lipid bilayer and the rate of recovery increases with decreasing hydrophobicity of the lipid.  相似文献   

2.
Changes in the membrane morphology and phospholipid content of human erythrocytes were determined after incubation of intact cells with each of various exogeneous phospholipases (PLases). PLase A2 from Naja naja or bee venom induced crenation of the cells in parallel with hydrolysis of the membrane phosphatidylcholine (PC). This crenated cell shape was reversed to a biconcave disc or cup-like form by a further treatment with lysophospholipase. In contrast, bacterial PLase C from Clostridium perfringens and Pseudomonas aureofaciens or fungal PLase D from Streptomyces chromofuscus induced invagination of the cells in parallel with hydrolysis of the PC. The action of the latter group of PLases on the membrane morphology was counteracted by PLase A2, and vice versa. Thus, participation of the membrane lipid bilayer in the induction of membrane conformational change and hence cell shape change was demonstrated.  相似文献   

3.
ATP-depleted human erythrocytes lose their smooth discoid shape and adopt a spiny, crenated form. This shape change coincides with the conversion of phosphatidylinositol-4,5-bisphosphate to phosphatidylinositol and phosphatidic acid to diacylglycerol. Both crenation and lipid dephosphorylation are accelerated by iodoacetamide, and both are reversed by nutrient supplementation. The observed changes in lipid populations should shrink the membrane inner monolayer by 0.6%, consistent with estimates of bilayer imbalance in crenated cells. These observations suggest that metabolic crenation arises from a loss of inner monolayer area secondary to the degradation of phosphatidylinositol-4,5-bisphosphate and phosphatidic acid. A related process, crenation after Ca2+ loading, appears to arise from a loss inositides by a different pathway.  相似文献   

4.
Echinocytes formed from discocytic erythrocytes by electric field pulses at 0 degrees C return to the discoytic shape upon incubation at 37 degrees C and subsequently turn into stomatocytes. Active and passive components of phospholipid translocation are involved in this shape recovery. Following low-field-strength pulses (5 kV cm-1), shape recovery is fully suppressed by ATPase inhibitors, such as vanadate. When vanadate is only added after stomatocyte formation has been completed, the cells return to the stage of echinocytosis prevailing before recovery. At higher field strength (7 kV cm-1) and in particular after repetitive field pulses, the subsequent incubation at 37 degrees C results in partial shape recovery even in the presence of vanadate. On the basis of the enhanced passive transmembrane mobilities of phospholipid probes observed previously following electroporation, the shape changes in the presence of vanadate are proposed to be due to a passive net movement of phospholipids from the outer to the inner membrane leaflet, as a consequence of the different mobilities of the various membrane phospholipids. Repetitive pulses at higher field strengths lead to a progressively more discocytic stationary shape during subsequent resealing. This phenomenon is explained by the progressively increased transbilayer mobility of the normally almost immobile phospholipid sphingomyelin and a consecutive progressive symmetrization of all membrane phospholipds.  相似文献   

5.
Defatted serum albumin is found to induce a cup shape in erythrocytes. At 40 mg/ml of albumin, approx. 80% of washed erythrocytes possess this morphology, which can be reversed to disc shape by dinitrophenol. Erythrocytes treated with trypsin, papain, pronase or neuraminidase show enhanced susceptibility to cup formation by albumin; however, chymotrypsinized erythrocytes exhibit a normal response. Red cells treated with concanavalin A (but not its succinylated derivative) show resistance to the cupping effect of albumin as well as the crenating effects of dinitrophenol and glass. The resistance develops after about 20 min following the exposure of cells to the lectin, and is rapidly abrogated on removal of the bound lectin by alpha-methylmannoside. Incubation of the concanavalin A-exposed cells at low temperature leads to prolongation of the time required to achieve the resistance. These results indicate an involvement of membrane integral proteins in mediating the shape modulating effects of albumin, dinitrophenol and exposure to glass.  相似文献   

6.
Echinocytes formed from discocytic erythrocytes by electric field pulses at 0 degree C return to the discoytic shape upon incubation at 37 degrees C and subsequently turn into stomatocytes. Active and passive components of phospholipid translocation are involved in this shape recovery. Following low-field-strength pulses (5 kV cm-1), shape recovery is fully suppressed by ATPase inhibitors, such as vanadate. When vanadate is only added after stomatocyte formation has been completed, the cells return to the stage of echinocytosis prevailing before recovery. At higher field strength (7 kV cm-1) and in particular after repetitive field pulses, the subsequent incubation at 37 degrees C results in partial shape recovery even in the presence of vanadate. On the basis of the enhanced passive transmembrane mobilities of phospholipid probes observed previously following electroporation, the shape changes in the presence of vanadate are proposed to be due to a passive net movement of phospholipids from the outer to the inner membrane leaflet, as a consequence of the different mobilities of the various membrane phospholipids. Repetitive pulses at higher field strengths lead to a progressively more discocytic stationary shape during subsequent resealing. This phenomenon is explained by the progressively increased transbilayer mobility of the normally almost immobile phospholipid sphingomyelin and a consecutive progressive symmetrization of all membrane phospholipids.  相似文献   

7.
Erythrocytes in long-preserved blood are spherical, but when the cells are incubated with inosine and adenine, the resulting increase in ATP content is accompanied by a shape change of the cells to discoidal form via a crenated form. The cells incubated with adenine alone or with no addition remain almost unchanged in shape. When incubated with inosine alone, the elevation in ATP level is less than that with both inosine and adenine, and the cell shape remains unchanged or changes partially into a crenated form. These phenomena occur in the presence of EDTA as well as in the absence of serum protein in the media. The cell volumes are measured as packed cell volume after centrifugation, by means of a Coulter counter (model S), and by determination of the intercellular space by the use of131I-labeled bovine serum albumin. The results show that no alteration in cell volume occurs during the shape changes. Accordingly, the surface area of the cell must increase with increase in the ATP content. This suggests that both the lipid bimolecular layer and the undermembrane structure are altered during the shape change.  相似文献   

8.
We have previously proposed that if the two half-layers of a membrane are different in their protein and lipid compositions, they may respond differently to some membrane perturbation (the bilayer couple hypothesis). This hypothesis has been applied to explain the changes in shape of human erythrocytes that are produced by a variety of amphipathic compounds. These compounds are presumed to intercalate by their hydrophobic ends into the lipid portions of the membrane; if the compounds are anions, the binding is preferentially to the outer half of the bilayer, if cations, to the inner half. It is proposed that such preferential binding causes an expansion of one half-layer relative to the other, with a corresponding change in cell shape. The predicted sidedness of these shape changes is now demonstrated in experiments with methochlorpromazine and 2,4,6-trinitrophenol. Under appropriate nonequilibrium or equilibrium or equilibrium conditions, both of these compounds are shown to be either crenators or cup-formers of the intact erythrocyte, depending upon which side of the membrane they are concentrated in. These results therefore strongly support the bilayer couple hypothesis.  相似文献   

9.
Modulation of erythrocyte vesiculation by amphiphilic drugs   总被引:3,自引:0,他引:3  
Release of acetylcholinesterase-containing vesicles from human erythrocyte membranes induced by dimyristoylphosphatidylcholine (DMPC) was inhibited by exposure of red cells to cationic amphiphilic drugs like tetracaine, chlorpromazine and primaquine which all are known to induce stomatocyte formation. On the other hand, the process was facilitated when red cells were exposed to crenators like the anionic drugs indomethacin and phenylbutazone or when DMPC was added to calcium-loaded red cells. The results suggest that agents which are known to modulate red cell shape do also influence the vesiculation behavior of the cells.  相似文献   

10.
Adrenal glands from ACTH-treated intact ducks and chronically adenohypophysectomized ducks showed clear zonation into a subcapsular zone (SCZ) and an inner zone (IZ). Adenohypophysectomy caused ultrastructural changes in the IZ but not in the SCZ cells. These included increases in lipid droplets, changes in mitochondrial cristae from tubular to shelf-like, and changes in the shape of the nuclei from spherical to crenated. These changes were reversed by treatment with ACTH. Also, cells of the IZ, but not the SCZ, of adrenals from intact birds given ACTH showed more SER, more dense bodies, fewer lipid droplets and more prominent Golgi complexes. IZ cells incubated in buffer containing no ACTH developed mitochondria with shelf-like cristae and numerous opaque granules in the matrix. Exposure to buffer containing ACTH caused the mitochondrial cristae to become tubular and the matrix granules either decreased in number or disappeared. The granules could be extracted by incubating sections with chelating agents. The mitochondria in SCZ cells did not respond structurally to the presence of ACTH in the incubation medium but the matrix granules, like those in IZ cells, responded to the presence of chelating agents.  相似文献   

11.
Human erthrocyte membranes in isotonic medium change shape from crenated spheres to biconcave disks and cup-forms when incubated at 37 degrees C in the presence of MgATP (M. P. Sheetz and S. J. Singer, 1977, J. Cell Biol. 73:638-646). The postulated relationship between spectrin phosphorylation and shape change (W. Birchmeier and S. J. Singer, 1977, J. Cell Biol. 73:647-659) is examined in this report. Salt extraction of white ghosts reduced spectrin phosphorylation during shape changes by 85-95%. Salt extraction did not alter crenation, rate of MgATP-dependent shape change, or the fraction (greater than 80%) ultimately converted to disks and cup-forms after 1 h. Spectrin was partially dephosphorylated in intact cells by subjection to metabolic depletion in vitro. Membranes from depleted cells exhibited normal shape-change behavior. Shape-change behavior was influenced by the hemolysis buffer and temperature and by the time required for membrane preparation. Tris and phosphate ghosts lost the capacity to change shape after standing for 1-2 h at 0 degrees C. Hemolysis in HEPES or N- tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid yielded ghosts that were converted rapidly to disks in the absence of ATP and did not undergo further conversion to cup-forms. These effects could not be attributed to differential dephsphorylation of spectrin, because dephosphorylation during ghost preparation and incubation was negligible. These results suggest that spectrin phosphorylation is not required for MgATP-dependent shape change. It is proposed that other biochemical events induce membrane curvature changes and that the role of spectrin is passive.  相似文献   

12.
The human erythrocyte membrane skeleton may be an ionic gel   总被引:3,自引:0,他引:3  
In the first paper in this series (Stokke et al. Eur Biophys J 1986, 13:203-218) we developed the general theory of the mechanochemical properties and the elastic free energy of the protein gel--lipid bilayer membrane model. Here we report on an extensive numerical analysis of the human erythrocyte shapes and shape transformations predicted by this new cell membrane model. We have calculated the total elastic free energy of deformation of four different cell shape classes: disc-shaped cells, cup-shaped cells, crenated cells, and cells with membrane invaginations. We find that which of these shape classes is favoured depends strongly on the spectrin gel osmotic tension, IIGu, and the surface tensions, IIEu and IIPu, of the extracellular and protoplasmic halves of the membrane lipid bilayer, respectively. For constant ratio IIEu/IIPu greater than O large negative or positive values of IIGu favour respectively the crenated and invaginated cell shape classes. For small absolute values of IIGu, IIEu, and IIPu, biconcave or cup-shaped cells are the stable ones. Our numerical analysis shows that the higher the membrane skeleton compressibility is, the smaller are the values of IIGu needed to induce cell shape transformation. We find that the stable and metastable shapes of discocytes and stomatocytes generally depend both on the shape of the stressfree membrane skeleton and the membrane skeleton compressibility.  相似文献   

13.
The membrane-permeabilizing activities of mastoparans and related histamine-releasing agents were compared through measurements of K(+) efflux from bacteria, erythrocytes, and mast cells. Changes in bacterial cell viability, hemolysis, and histamine release, as well as in the shape of erythrocytes were also investigated. The compounds tested were mastoparans (HR1, a mastoparan from Polistes jadwagae, and a mastoparan from Vespula lewisii), granuliberin R, mast cell-degranulating peptide, and compound 48/80, as well as antimicrobial peptides, such as magainin I, magainin II, gramicidin S, and melittin. We used a K(+)-selective electrode to determine changes in the permeability to K(+) of the cytoplasmic membranes of cells. Consistent with the surface of mast cells becoming negatively charged during histamine release, due to the translocation of phosphatidylserine to the outer leaflet of the cytoplasmic membrane, histamine-releasing agents induced K(+) efflux from mast cells, dependent on their ability to increase the permeability of bacterial cytoplasmic membranes rich in negatively charged phospholipids. The present results demonstrated that amphiphilic peptides, possessing both histamine-releasing and antimicrobial capabilities, induced the permeabilization of the cytoplasmic membranes of not only bacteria but mast cells. Mastoparans increased the permeability of membranes in human erythrocytes at higher concentrations, and changed the normal discoid shape to a crenated form. The structural requirement for making the crenated form was determined using compound 48/80 and its constituents (monomer, dimer, and trimer), changing systematically the number of cationic charges of the molecules.  相似文献   

14.
The ATP-dependent transformation of crenated white human erythrocyte ghosts into smoothed disc and cup forms is inhibited by the soluble 40-45-kilodalton (kDa) cytoplasmic portion of the major transmembrane protein, band 3. The band 3 fragment was prepared by chymotryptic treatment of inverted vesicles stripped of peripheral proteins. When present at greater than or equal to 0.2 mg per mg membrane protein (ie, greater than or equal to 2 mol fragment per mol endogenous band 3), the fragment significantly reduced the rate of shape change but did not alter the proportion of membranes that were ultimately converted into smoothed forms (greater than 90%). The inhibitory activity of the fragment could not be attributed to contamination of the fragment preparation by actin or proteolytic enzymes. ATP-independent shape transformation was not inhibited. The band 3 fragment may compete with endogenous, intact band 3 for an association with the spectrin-actin network required for ATP-dependent smoothing of crenated membranes.  相似文献   

15.
Ultraviolet light (UV) irradiation increased expansion of TMV lesions in detached Pinto bean primary leaves incubated in darkness. However, if after UV-irradiation the leaves were incubated in the light, no increase in lesion expansion occurred. The light effect was considered not to be due to photorepair of UV damaged DNA, since non-photorepairing treatments such as incubation in red light, or delayed exposure to white light after UV irradiation also prevented increase in lesion expansion. The effect of visible light in preventing TMV-lesion enlargement was shown to be related to photosynthetic energy supply to the host cell defense mechanism since incubation of infected leaves in the presence of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-l,l-dimethyl urea (DCMU) in light caused large lesions whether leaves were irradiated by UV or not. Supplying 0.1 M sucrose in the dark also inhibited lesion enlargement in UV-irradiated or nonirradiated leaves. Dinitrophenol (DNP) negated the sucrose effect in the dark. However, in light incubation, DNP did not induce large lesions indicating that DNP did not interfere with energy supply in the light. It is concluded that the Pinto bean leaf cells can use energy derived both from mitochondria and chloroplasts for building the resistance mechanism to virus spread. In this case, cellular resistance to virus spread seems to be correlated with callose deposition on the walls of noninfected cells adjacent to the necrotic cells. Energy supply in various forms will assist host cells in building the resistance mechanism as well as retarding senescence. Detachment, prolonged dark incubation, or exogenous supply of DNP led to accelerated senescence which in turn led to secondary enlargement of lesions. The cause of such secondary enlargement may be explained by starvation of cells and disappearance of callose.  相似文献   

16.
Human erythrocyte ghosts have been shown, by scanning electron microscopy, to undergo ATP-dependent shape changes. Under appropriate conditions the ghosts prepared from normal disk-shaped intact cells adopt a highly crenated shape, which in the presence of Mg-ATP at 37 degrees C is slowly converted to the disk shape and eventually to the cup shape. These changes are not observed with other nucleotides or with 5'-adenylyl imidodiphosphate. Anti-spectrin antibodies, incorporated along with the Mg-ATP into the ghosts in amounts less than equivalent to the spectrin, markedly accelerate the shape changes observed with the Mg-ATP alone. The Fab fragments of these antibodies, however, have no effect. The conclusion is that the structural effect produced by the ATP is promoted by the cross-linking of spectrin by its antibodies, and may therefore itself be some kind of polymerization or network formation involving the spectrin complex on the cytoplasmic face of the membrane. The factors that contribute to the shape of the ghost and of the intact erythrocyte are discussed in the light of these findings.  相似文献   

17.
Role of the bilayer in the shape of the isolated erythrocyte membrane   总被引:1,自引:0,他引:1  
Summary The determinants of cell shape were explored in a study of the crenation (spiculation) of the isolated erythrocyte membrane. Standard ghosts prepared in 5mm NaPi (pH 8) were plump, dimpled disks even when prepared from echinocytic (spiculated) red cells. These ghosts became crenated in the presence of isotonic saline, millimolar levels of divalent cations, 1mm 2,4-dinitrophenol or 0.1mm lysolecithin. Crenation was suppressed in ghosts generated under conditions of minimal osmotic stress, in ghosts from red cells partially depleted of cholesterol, and, paradoxically, in ghosts from red cells crenated by lysolecithin. The susceptibility of ghosts to crenation was lost with time; this process was potentiated by elevated temperature, low ionic strength, and traces of detergents or chlorpromazine.In that ghost shape was influenced by a variety of amphipaths, our results favor the premise that the bilayer and not the subjacent protein reticulum drives ghost crenation. The data also suggest that vigorous osmotic hemolysis induces a redistribution of lipids between the two leaflets of the bilayer which affects membrane contour through a bilayer couple mechanism. Subsequent relaxation of that metastable distribution could account for the observed loss of crenatability.  相似文献   

18.
We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.  相似文献   

19.
The modulation of immunoglobulin on the surface of rabbit B lymphocytes by goat antibodies with specificity for rabbit surface membrane immunoglobulin or by such goat antibodies covalently linked to Sepharose was studied in relation to the proliferative response to these agents. Although the induction of DNA synthesis was greater in the presence of Sepharose-linked antibody than in the presence of free antibody, modulation of surface membrane immunoglobulin was induced with free but not with Sepharose-linked antibody. Thus, in the presence of free antibody the surface membrane immunoglobulin content of cells was rapidly decreased and remained at a low level throughout the culture period, whereas the surface immunoglobulin content of cells incubated with Sepharose antibody was essentially unaltered. The surface immunoglobulin lost from cells incubated with free goat antibodies reappeared slowly upon further incubation in culture medium devoid of antibody, and such reappearance of rabbit surface membrane immunoglobulin was inhibited by puromycin. Upon culture with Sepharose-linked antibody the surface membrane immunoglobulin content of B cells was unaffected by puromycin. This result was interpreted as indicating that surface membrane immunoglobulin loss followed by reappearance does not occur. Lastly, the linkage of surface membrane immunoglobulin to cytoskeletal elements induced by free antibody was not induced by Sepharose-linked antibody as judged from differences in detergent solubilization characteristics. Possible mechanisms to account for these differences in surface membrane immunoglobulin modulation as they relate to the proliferative response are considered.  相似文献   

20.
Control of erythrocyte shape by calmodulin   总被引:5,自引:3,他引:2       下载免费PDF全文
Erythrocytes are deformable cells whose shapes can be altered by treatments with a variety of drugs. The forms the erythrocyte may assume vary continuously from the spiny "echinocytes" or crenated cells at one extreme to highly folded and dented "cupped" cells at the other extreme. Examination of 39 compounds for cup-forming activity revealed a remarkable correlation between their ability to form cupped cells and their inhibitory activity against the calcium regulatory protein, calmodulin. Calmodulin is known to interact with several erythrocyte proteins including spectrin, spectrin kinase, and the Ca++ ATPase calcium pump of the membrane. These proteins regulate the form of the cytoskeleton as well as intracellular calcium and ATP levels. It is proposed that calmodulin is required to maintain normal erythrocyte morphology and that in the presence of calmodulin inhibitors, the cell assumes a cupped shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号