首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The 65-kilodalton DNA-binding protein (65KDBP) of herpes simplex virus type 1 (HSV-1), the product of the UL42 gene, is required for DNA replication both in vitro and in vivo, yet its actual function is unknown. By two independent methods, it was shown that the 65KDBP stimulates the activity of the HSV-1-encoded DNA polymerase (Pol). When Pol, purified from HSV-1-infected cells, was separated from the 65KDBP, much of its activity was lost. However, addition of the 65KDBP, purified from infected cells, stimulated the activity of Pol 4- to 10-fold. The ability of a monoclonal antibody to the 65KDBP to remove the Pol-stimulating activity from preparations of the 65KDBP confirmed that the activity was not due to a trace contaminant. Furthermore, the 65KDBP did not stimulate the activity of other DNA polymerases derived from T4, T7, or Escherichia coli. The 65KDBP gene transcribed in vitro from cloned DNA and translated in vitro in rabbit reticulocyte lysates also was capable of stimulating the product of the pol gene when the RNAs were cotranslated. The product of a mutant 65KDBP gene missing the carboxy-terminal 28 amino acids exhibited wild-type levels of Pol stimulation, while the products of two large deletion mutants of the gene could not stimulate Pol activity. These experiments suggest that the 65KDBP may be an accessory protein for the HSV-1 Pol.  相似文献   

2.
3.
4.
Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65KDBP) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65KDBP. Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65KDBP, was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65KDBP. The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65KDBP, thus confirming the gene assignment.  相似文献   

5.
6.
Using indirect immunofluorescence, well-characterized monoclonal and polyclonal antibodies, and temperature-sensitive (ts) mutants of herpes simplex virus type 1, we demonstrated that the 65-kilodalton DNA-binding protein (65KDBP), the major DNA-binding protein (infected cell polypeptide 8 [ICP8]), and the viral DNA polymerase (Pol) colocalize to replication compartments in the nuclei of infected cells under conditions which permit viral DNA synthesis. When viral DNA synthesis was blocked by incubation of the wild-type virus with phosphonoacetic acid, the 65KDBP, Pol, and ICP8 failed to localize to replication compartments. Instead, ICP8 accumulated nearly exclusively to prereplication sites, while the 65KDBP was only diffusely localized within the nuclei. Although some of the Pol accumulated in prereplication sites occupied by ICP8 in the presence of phosphonoacetic acid, a significant amount of Pol also was distributed throughout the nuclei. Examination by double-labeling immunofluorescence of DNA- ts mutant virus-infected cells revealed that the 65KDBP also did not colocalize with ICP8 to prereplication sites at temperatures nonpermissive for virus replication. These results are in disagreement with the hypothesis that ICP8 is the major organizational protein responsible for attracting other replication protein to prereplication sites in preparation for viral DNA synthesis (A. de Bruyn Kops and D. M. Knipe, Cell 55:857-868, 1988), and they suggest that other viral proteins, perhaps in addition to ICP8, or replication fork progression per se are required to organize the 65KDBP.  相似文献   

7.
The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein.  相似文献   

8.
A vector which expresses the herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene was constructed by ligating two separately cloned HSV DNA restriction fragments into an intermediate plasmid and then mobilizing the intact polymerase gene-encoding sequence into a pSV2 derivative. The expression vector (pD7) contains a functional simian virus 40 replication origin and early enhancer-promoter upstream from the HSV DNA polymerase-encoding sequence. COS-1 cells transfected with pD7 contained an RNA species, shown by Northern blot analysis to hybridize specifically with an HSV DNA pol probe and to be the same size (4.3 kilobases) as the pol mRNA found in HSV-1-infected COS-1 cells. A genetic complementation test was used to establish that pD7 expresses a functional pol gene product. COS-1 cells transfected with pD7 were able to partially complement the growth defect of an HSV-1 (KOS) temperature-sensitive mutant, tsC7, in the DNA polymerase gene at the nonpermissive temperature.  相似文献   

9.
J K Vishwanatha  Z Wei 《Biochemistry》1992,31(6):1631-1635
The ubiquitous dinucleotide P1,P4-di(adenosine-5') tetraphosphate (Ap4A) has been proposed to be involved in DNA replication and cell proliferation, DNA repair, platelet aggregation, and vascular tonus. A protein binding specifically to Ap4A is associated with a multiprotein form of DNA polymerase alpha (pol alpha 2) in HeLa cells. The Ap4A binding protein from HeLa cells has been purified to homogeneity starting from pol alpha 2 complex. The Ap4A binding protein is hydrophobic and is resolved from the pol alpha 2 complex by hydrophobic interaction chromatography on butyl-Sepharose and subsequently purified to homogeneity by chromatography on Mono-Q and Superose-12 FPLC columns. The Ap4A binding activity elutes as a single symmetrical peak upon gel filtration with a molecular mass of 200 kDa. Upon polyacrylamide gel electrophoresis under nondenaturing conditions, the purified protein migrates as a single protein of 200 kDa. Upon electrophoresis under denaturing conditions, the binding activity is resolved into two polypeptides of 45 and 22 kDa, designated as A1 and A2, respectively. A1 and A2 can be cross-linked using the homobifunctional cross-linking agent disuccinimidyl suberate. The cross-linked protein migrates as a single protein of 210 kDa on polyacrylamide gels under denaturing conditions, suggesting that these two polypeptides are subunits of a single protein. The purified protein binds Ap4A efficiently, and by Scatchard analysis, we have determined a dissociation constant of 0.25 microM, indicating high affinity of Ap4A binding protein to its ligand. ATP is not required for the binding activity. The nonionic detergent Triton X-100 is necessary for stabilizing the purified protein. Amino acid composition analysis indicates that A1 and A2 are distinct.  相似文献   

10.
The herpes simplex virus 1 (HSV-1) UL42 protein, one of seven herpes-encoded polypeptides that are required for the replication of the HSV-1 genome, is found in a 1:1 complex with the HSV-1 DNA polymerase (Crute, J. J., and Lehman, I. R. (1989) J. Biol. Chem. 264, 19266-19270). To obtain herpes DNA polymerase free of UL42 protein, we have cloned and overexpressed the Pol gene in a recombinant baculovirus vector and purified the recombinant DNA polymerase to near homogeneity. Replication of singly primed M13mp18 single-stranded DNA by the recombinant enzyme in the presence of the herpes encoded single-stranded DNA-binding protein ICP8 yields in addition to some full-length product a distribution of intermediate length products by a quasi-processive mode of deoxynucleotide polymerization. Addition of the purified UL42 protein results in completely processive polymerization and the generation of full-length products. Similar processivity is observed with the HSV-1 DNA polymerase purified from herpes-infected Vero cells. Processive DNA replication by the DNA polymerase isolated from HSV-1-infected Vero cells or the recombinant DNA polymerase-UL42 protein complex requires that the single-stranded DNA be coated with saturating levels of ICP8. ICP8 which binds single-stranded DNA in a highly cooperative manner is presumably required to melt out regions of secondary structure in the single-stranded DNA template, thereby potentiating the processivity enhancing action of the UL42 protein.  相似文献   

11.
UL9, the origin-binding protein of herpes simplex virus type 1 (HSV-1), has been overexpressed in an insect cell overexpression system and purified to homogeneity. In this report, we confirm and extend recent findings on the physical properties, enzymatic activities, and binding properties of UL9. We demonstrate that UL9 exists primarily as a homodimer in solution and that these dimers associate to form a complex nucleoprotein structure when bound to the HSV origin of replication. We also show that UL9 is an ATP-dependent helicase, capable of unwinding partially duplex DNA in a sequence-independent manner. Although the helicase activity of UL9 is demonstrable on short duplex substrates in the absence of single-stranded DNA-binding proteins, the HSV single-stranded DNA-binding protein ICP8 (but not heterologous binding proteins) stimulates UL9 to unwind long DNA sequences of over 500 bases. We were not able to demonstrate unwinding of fully duplex DNA sequences containing the HSV origin of replication. However, in experiments designed to detect origin-dependent unwinding, we did find that UL9 wraps supercoiled DNA independent of sequence or ATP hydrolysis.  相似文献   

12.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

13.
Herpes simplex virus (HSV) ribonucleotide reductase is formed by the association of two distinct dimeric subunits, R1 and R2. Attempts to purify either the HSV holoenzyme or its R1 subunit in their active form have been unsuccessful until now. The C terminus of the R2 protein being involved in the association with R1, the synthetic nonapeptide corresponding to this terminus, impedes the formation of the holoenzyme by competing with R2 for a critical site on R1. Based upon these observations, we developed an affinity chromatographic procedure to purify the R1 protein from HSV-1-infected baby hamster kidney cells. Specific binding of R1 to an affinity column made by linking the peptide HSV R2-(326-337) to Affi-Gel 10, followed by specific elution with an excess of an analogous peptide exhibiting a higher affinity for R1 yielded, in a single step, highly purified R1 protein. The purified R1 preparations contained approximately 95% of intact R1, the remaining 5% consisting of two R1 copurifying proteolytic breakdown products. The purified R1 protein exhibited a high reductase specific activity when mixed with an excess of the R2 subunit. Moreover, in vitro kinase assays revealed that the purified R1 protein of HSV-1 possesses an autophosphorylating activity also able to phosphorylate alpha-casein and histone II-S. The intrinsic protein kinase activity of HSV R1 is associated with its unique N-terminal domain which is absent from all other reductase subunits 1 and contains consensus motifs found in Ser/Thr protein kinases. A preliminary characterization of the kinase activity of the R1 protein of HSV-1 ribonucleotide reductase is presented.  相似文献   

14.
R D Everett  A Orr    M Elliott 《Nucleic acids research》1991,19(22):6155-6161
Herpes simplex virus type 1 (HSV-1) encodes five immediate early (IE) polypeptides. This paper reports the construction of a baculovirus vector which expresses large amounts of Vmw110, the product of IE gene 1. The expressed protein has been purified to near homogeneity and has a mobility on SDS polyacrylamide gels identical to that of Vmw110 produced during HSV-1 infection. Characterisation of its properties indicated that it forms dimers and perhaps higher order oligomers in solution and that the purified protein binds to both single stranded and double stranded calf thymus DNA cellulose columns. However, filter binding experiments were unable to detect any stable association of Vmw110 with DNA in solution.  相似文献   

15.
The human herpesvirus entry mediator C (HveC/PRR1) is a member of the immunoglobulin family used as a cellular receptor by the alphaherpesviruses herpes simplex virus (HSV), pseudorabies virus, and bovine herpesvirus type 1. We previously demonstrated direct binding of the purified HveC ectodomain to purified HSV type 1 (HSV-1) and HSV-2 glycoprotein D (gD). Here, using a baculovirus expression system, we constructed and purified truncated forms of the receptor containing one [HveC(143t)], two [HveC(245t)], or all three immunoglobulin-like domains [HveC(346t)] of the extracellular region. All three constructs were equally able to compete with HveC(346t) for gD binding. The variable domain bound to virions and blocked HSV infection as well as HveC(346t). Thus, all of the binding to the receptor occurs within the first immunoglobulin-like domain, or V-domain, of HveC. These data confirm and extend those of Cocchi et al. (F. Cocchi, M. Lopez, L. Menotti, M. Aoubala, P. Dubreuil, and G. Campadelli-Fiume, Proc. Natl. Acad. Sci. USA 95:15700, 1998). Using biosensor analysis, we measured the affinity of binding of gD from HSV strains KOS and rid1 to two forms of HveC. Soluble gDs from the KOS strain of HSV-1 had the same affinity for HveC(346t) and HveC(143t). The mutant gD(rid1t) had an increased affinity for HveC(346t) and HveC(143t) due to a faster rate of complex formation. Interestingly, we found that HveC(346t) was a tetramer in solution, whereas HveC(143t) and HveC(245t) formed dimers, suggesting a role for the third immunoglobulin-like domain of HveC in oligomerization. In addition, the stoichiometry between gD and HveC appeared to be influenced by the level of HveC oligomerization.  相似文献   

16.
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.  相似文献   

17.
The UL37 open reading frame of the herpes simplex virus type 1 (HSV-1) DNA genome is located between map units 0.527 and 0.552. We have identified and characterized the UL37 protein product in HSV-1-infected cells. The presence of the UL37 protein was detected by using a polyclonal rabbit antiserum directed against an in vitro-translated product derived from an in vitro-transcribed UL37 mRNA. The UL37 open reading frame encodes for a protein with an apparent molecular mass of 120 kDa in HSV-1-infected cells; the protein's mass was assigned on the basis of its migration in sodium dodecyl sulfate-polyacrylamide gels. The UL37 protein is not present at detectable levels in purified HSV-1 virions, suggesting that it is not a structural protein. Analysis of time course experiments and experiments using DNA synthesis inhibitors demonstrated that the UL37 protein is expressed prior to the onset of viral DNA synthesis, reaching maximum levels late in infection, classifying it as a gamma 1 gene. Elution of HSV-1-infected cell proteins from single-stranded DNA agarose columns by using a linear KCl gradient demonstrated that the UL37 protein elutes from this matrix at a salt concentration similar to that observed for ICP8, the major HSV-1 DNA-binding protein. In addition, computer-assisted analysis revealed a potential ATP-binding domain in the predicted UL37 amino acid sequence. On the basis of the kinetics of appearance and DNA-binding properties, we hypothesize that UL37 represents a newly recognized HSV-1 DNA-binding protein that may be involved in late events in viral replication.  相似文献   

18.
We have compared the protein kinase activities of the R1 subunits from herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) ribonucleotide reductase following expression in Escherichia coli. Autophosphorylation activity was observed when kinase assays were performed with immunoprecipitated R1 or proteins purified to homogeneity, and the activity was stimulated by the basic protein protamine. Transphosphorylation of histones or calmodulin by purified or immunoprecipitated HSV-1 and HSV-2 R1 was not observed, and our results suggest that the activities of these two proteins are similar. We further characterized the protein kinase activity of HSV-1 R1 by producing insertion and deletion mutants constructed with a plasmid expressing R1 amino acids 1 to 449. C-terminal deletion analysis identified the catalytic core of the enzyme as comprising residues 1 to 292, and this polypeptide will be useful for structural determinations by X-ray crystallography. Insertion of a 4-amino-acid sequence at sites within the protein kinase domain identified regions essential for activity; insertions at residues 22 and 112 completely inactivated activity, and an insertion at residue 136 reduced activity sixfold. Similar insertions at residues 257, 262, 292, and 343 had no effect on activity. The ATP analog 5'-fluorosulfonylbenzoyladenosine, which covalently modifies conventional eukaryotic kinases at an essential lysine residue within the active site, did label HSV R1, but this labelling occurred outside the N-terminal domain. These data indicate that the HSV R1 kinase is novel and distinct from other eukaryotic protein kinases.  相似文献   

19.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   

20.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号