首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Levels of expression of hBD-1 gene (beta-defensin 1) and Toll-like receptors (TLR1, TLR2, TLR6) in cells of cervical mucosa in healthy nonpregnant and healthy pregnant women as well as in pregnant women with urogenital infection was measured by developed RT-PCR systems. During normal pregnancy compared with nonpregnant women, increase of TLRs genes expression which was correlated with increase of hBD-1 gene expression was observed. During urogenital infection in pregnant women compared with healthy pregnant, 10- fold and 50-fold increase of TLR1 and TLR2 genes expression respectively was associated with 2.5-fold decrease of hBD-1 gene expression in cervical mucosa. In group of women with untrauterine infection more marked increase of TLRs genes expression was observed. Thus significant changes (TLRs, antimicrobial peptides, cytokines etc.) in cells of cervical mucosa can be used as prognostic criteria for development of intrauterine infection.  相似文献   

2.
3.
Viruses and Toll-like receptors   总被引:1,自引:0,他引:1  
Production of inflammatory cytokines and type I interferons by mammalian cells is mediated through virus-specific activation of Toll-like receptors (TLRs). Known roles for different TLRs and speculation as to their roles in viral pathogenesis and immunity are discussed in this review.  相似文献   

4.
Viruses and Toll-like receptors   总被引:3,自引:0,他引:3  
Recently a number of viruses, including a poxvirus, herpesvirus, retrovirus and two paramyxoviruses, have been shown to activate cells via Toll-like receptor family members. Here we postulate that although activation via Toll-like receptor molecules can lead to anti-viral innate immune responses, in some cases viruses may use these responses to ameliorate infection.  相似文献   

5.
6.
7.
Toll-like receptors and innate immunity   总被引:8,自引:0,他引:8  
Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, these receptors have evolved to recognize conserved products unique to microbial metabolism. This specificity allows the Toll proteins to detect the presence of infection and to induce activation of inflammatory and antimicrobial innate immune responses. Recognition of microbial products by Toll-like receptors expressed on dendritic cells triggers functional maturation of dendritic cells and leads to initiation of antigen-specific adaptive immune responses.  相似文献   

8.
Toll-like receptors and innate immunity   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling.  相似文献   

9.
Lung carcinoma is one of the leading causes of death worldwide. It is a non-immunogenic cancer, resistant to immune surveillance. Toll-like receptors (TLRs) connect the innate to the adaptive immune system. Given that cancerous cells evade the immune system, the activation of TLRs could represent a potential target for cancer therapy. The induction of Th1-like and cytotoxic immunity by TLR signalling could lead to tumour cell death, resulting in tumour regression or arrest. However, basic research and clinical trials revealed that the activation of specific TLRs, such as TLR2, TLR4 and TLR9, do not have any anti-tumour activity in lung carcinoma. Increasing evidence suggests that TLRs are important regulators of tumour biology; however, little is known about their function in lung cancer. Thus, in order to develop new therapeutic approaches, further studies are needed to understand the connection between TLRs and lung cancer progression. This review focuses on the potential mechanisms by which TLR ligands can facilitate or not lung cancer and lung metastases establishment/progression.  相似文献   

10.
Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless, our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as "free" molecules or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review, we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic.  相似文献   

11.
Pleiotropic function of Toll-like receptors   总被引:3,自引:0,他引:3  
A group of type I transmembrane proteins, Toll-like receptors (TLRs) discriminate various microorganism-associated molecular structures that can function as immune adjuvants. Each TLR signaling has an overlapping but distinct function, which largely depends on intracellular adaptor molecules. Clarifying the functions and signaling of TLRs should provide us with critical information for manipulating the host defense mechanism.  相似文献   

12.
The biology of Toll-like receptors   总被引:24,自引:0,他引:24  
In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion.  相似文献   

13.
14.
Abstract

Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.  相似文献   

15.
Toll-like receptors and Type I interferons   总被引:12,自引:0,他引:12  
Toll-like receptors (TLRs) are key molecules of the innate immune systems, which detect conserved structures found in a broad range of pathogens and trigger innate immune responses. A subset of TLRs recognizes viral components and induces antiviral responses. Whereas TLR4 recognizes viral components at the cell surface, TLR3, TLR7, TLR8, and TLR9 recognize viral nucleic acids on endosomal membrane. After ligand recognition, these members activate their intrinsic signaling pathways and induce type I interferon. In this review, we discuss the recent findings of the viral recognition by TLRs and their signaling pathways.  相似文献   

16.
Toll-like receptors (TLR) are among key receptors of the innate mammalian immune system. Receptors of this family are able to recognize specific highly conserved molecular regions (patterns) in pathogen structures, thus initiating reactions of both innate and acquired immune response finally resulting in the elimination of the pathogen. In this case every individual TLR type is able to bind a broad spectrum of molecules of microbial origin characterized by different chemical properties and structures. Recent data demonstrate the existence of a multistep mechanism of the TLR recognition of the pathogen in which, in addition to receptors proper, the involvement of different adapter molecules is necessary. However, functions of separate adapter molecules as well as the principles of formation of a multicomponent system of ligand-specific recognition are still not quite understandable. We describe all identified as well as possible (candidate) adapter TLR molecules by giving their brief characteristics, and we also propose generalized possible variants of the TLR ligand-specific recognition with involvement of adapter molecules.  相似文献   

17.
Toll-like receptors and corneal innate immunity   总被引:1,自引:0,他引:1  
The ocular surface is constantly exposed to a wide array of microorganisms. The ability of the cornea to recognize pathogens as foreign and eliminate them is critical to retain its transparency, hence preservation of sight. In the eye, as in other parts of the body, the early response against invading pathogens is provided by innate immunity. Corneal innate immune system uses a series of pattern recognition receptors to detect the presence of pathogens thus allowing for rapid host defense responses to invading microbes. A key component of such receptors is the "Toll-like receptors" (TLRs), which have come to occupy the center stage in innate immunity against invading pathogens. An increasing number of studies have shown that TLRs are expressed by a variety of tissues and cells of the eye and play an important role in ocular defense against microbial infection. Here in this review we summarize the current knowledge about TLR expression in human eye with main emphasis on the cornea, and discuss the future directions of the field.  相似文献   

18.
Toll-like receptors and innate antifungal responses   总被引:20,自引:0,他引:20  
The mammalian Toll-like receptors (TLRs) are homologues of Drosophila Toll and constitute a novel protein family involved in the mediation of innate immunity and the activation of adaptive immunity. Analysis of infection with human pathogenic fungi Candida albicans and Aspergillus fumigatus implicated TLR2 and TLR4 in elicitation of immune responses. Cryptococcus neoformans is recognized by a process that uses TLR4. C. albicans induces immunostimulation through causative agents, such as mannan or its structural derivatives (e.g. phospholipomannan), which are recognized by the immune system as pathogen-associated molecular patterns and are located in the cell wall of fungi. Secreted aspartic proteinases represent a key virulence factor that contributes to the ability of C. albicans to cause mucosal and disseminated infections, and might be a further potential stimulator of TLRs. Simultaneous activation of other pattern recognition receptors collaborating with TLRs illustrates the cooperation of various chains within ligand-specific receptor complexes for the recognition of fungal pathogens and their cell wall components.  相似文献   

19.
Toll-like receptors (TLRs) have a crucial role in the early detection of pathogen-associated molecular patterns and the subsequent activation of the adaptive immune response. Whether TLRs also have an important role in the recognition of endogenous ligands has been more controversial. Numerous in vitro studies have documented activation of both autoreactive B cells and plasmacytoid dendritic cells by mammalian TLR ligands. The issue of whether these in vitro observations translate to an in vivo role for TLRs in either the initiation or the progression of systemic autoimmune disease is a subject of intense research; data are beginning to emerge showing that this is the case.  相似文献   

20.
Toll-like receptors: a family of pattern-recognition receptors in mammals   总被引:2,自引:0,他引:2  
Armant MA  Fenton MJ 《Genome biology》2002,3(8):reviews301-6
The innate immune system uses a variety of germline-encoded pattern-recognition receptors that recognize conserved microbial structures or pathogen-associated molecular patterns, such as those that occur in the bacterial cell-wall components peptidoglycan and lipopolysaccharide. Recent studies have highlighted the importance of Toll-like receptors (TLRs) as a family of pattern-recognition receptors in mammals that can discriminate between chemically diverse classes of microbial products. First identified on the basis of sequence similarity with the Drosophila protein Toll, TLRs are members of an ancient superfamily of proteins, which includes related proteins in invertebrates and plants. TLRs activate innate immune defense reactions, such as the release of inflammatory cytokines, but increasing evidence supports an additional critical role for TLRs in orchestrating the development of adaptive immune responses. The sequence similarity between the intracellular domains of the TLRs and the mammalian interleukin-1 and interleukin-18 cytokine receptors reflects the use of a common intracellular signal-transduction cascade triggered by these receptor classes. But more recent findings have demonstrated that there are in fact TLR-specific signaling pathways and cellular responses. Thus, TLRs function as sentinels of the mammalian immune system that can discriminate between diverse pathogen-associated molecular patterns and then elicit pathogen-specific cellular immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号