首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eukaryotic cells utilize multiple mitogen-activated protein kinases (MAPKs) to transmit various extracellular stimuli to the nucleus. A subfamily of MAPKs that mediates environmental stress stimuli is also called stress-activated protein kinase (SAPK), which has crucial roles in cellular survival under stress conditions as well as inflammatory responses. Here we report that Cdc37, an evolutionarily conserved kinase-specific chaperone, is a positive regulator of Spc1 SAPK in the fission yeast Schizosaccharomyces pombe. Through a genetic screen, we have identified cdc37 as a mutation that compromises signaling through Spc1 SAPK. The Cdc37 protein physically interacts with Spc1, and the cdc37 mutation affects both the cellular level of the Spc1 protein and stress-induced Spc1 phosphorylation by Wis1 MAPK kinase (MAPKK). Consistently, expression of the stress response genes regulated by the Spc1 pathway is compromised in cdc37 mutant cells. On the other hand, a mutation in Hsp90, which often cooperates with Cdc37 in chaperoning protein kinases, does not affect Spc1 SAPK. These results suggest that Spc1 SAPK is a novel client protein for the Cdc37 chaperone, and the Cdc37 function is important to maintain the stability of the Spc1 protein and to facilitate stress signaling from Wis1 MAPKK to Spc1 SAPK.  相似文献   

2.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

3.
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay that is exacerbated during stress. Herein, we describe two upstream regulators of the Wis1-Spc1 cascade. wik1+ (Wis1 kinase) was identified from its homology to budding yeast SSK2, which encodes a MAPKK kinase that regulates the HOG1 osmosensing pathway. Delta wik1 cells are impaired in stress-induced activation of Spc1 and show a G2 cell cycle delay and osmosensitive growth. Moreover, overproduction of a constitutively active form of Wik1 induces hyperactivation of Spc1 in wis1(+)-dependent manner, suggesting that Wik1 regulates Spc1 through activation of Wis1. A mutation of mcs4+ (mitotic catastrophe suppressor) was originally isolated as a suppressor of the mitotic catastrophe phenotype of a cdc2-3w wee1-50 double mutant. We have found that mcs4- cells are defective at activation of Spc1 in response to various forms of stress. Epistasis analysis has placed Mcs4-upstream of Wik1 in the Spc1 activation cascade. These results indicate that Mcs4 is part of a sensor system for multiple environmental signals that modulates the timing of entry into mitosis by regulating the Wik1-Wis1-Spc1 kinase cascade. Inactivation of the sensor system delays the onset of mitosis and rescues lethal premature mitosis in cdc2-3w wee1-50 cells.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus. In baker's yeast external high osmolarity activates high osmolarity glycerol (HOG) MAPK pathway which consists of two upstream branches (SHO1 and SLN1) and common downstream elements Pbs2p MAPKK and Hog1p MAPK. Activation of this pathway causes rapid nuclear accumulation of Hog1p, essentially leading to the expression of target genes. Previously we have isolated a PBS2 homologue (DPBS2) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that partially complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show that by replacing C-terminal region of Dpbs2p with the homologous region of Pbs2p we could abrogate partial complementation exhibited by Dpbs2p and this was achieved due to increase in nuclear translocation of Hog1p. Thus, our result showed that in HOG pathway, MAPKK has important role in nuclear translocation of Hog1p.  相似文献   

5.
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK), which localizes to the cytoplasm in quiescent cells, translocates to the nucleus and then relocalizes to the cytoplasm again. The relocalization of nuclear MAPK to the cytoplasm was not inhibited by cycloheximide, confirming that the relocalization is achieved by nuclear export, but not synthesis, of MAPK. The nuclear export of MAPK was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent transport. We have then shown that MAP kinase kinase (MAPKK, also known as MEK), which mostly localizes to the cytoplasm because of its having NES, is able to shuttle between the cytoplasm and the nucleus constantly. MAPK, when injected into the nucleus, was rapidly exported from the nucleus by coinjected wild-type MAPKK, but not by the NES-disrupted MAPKK. In addition, injection of the fragment corresponding to the MAPK-binding site of MAPKK into the nucleus, which would disrupt the binding of MAPK to MAPKK in the nucleus, significantly inhibited the nuclear export of endogenous MAPK. Taken together, these results suggest that the relocalization of nuclear MAPK to the cytoplasm involves a MAPKK-dependent, active transport mechanism.  相似文献   

6.
M Adachi  M Fukuda    E Nishida 《The EMBO journal》1999,18(19):5347-5358
In response to extracellular stimuli, mitogen-activated protein kinase (MAPK, also known as ERK) translocates from the cytoplasm to the nucleus. MAP kinase kinase (MAPKK, also know as MEK), which possesses a nuclear export signal (NES), acts as a cytoplasmic anchor of MAPK. Here we show evidence that tyrosine (Tyr190 in Xenopus MPK1/ERK2) phosphorylation of MAPK by MAPKK is necessary and sufficient for the dissociation of the MAPKK-MAPK complex, and that the dissociation of the complex is required for the nuclear translocation of MAPK. We then show that nuclear entry of MAPK through a nuclear pore occurs via two distinct mechanisms. Nuclear import of wild-type MAPK (mol. wt 42 kDa) was induced by activation of the MAPK pathway even in the presence of wheat germ agglutinin or dominant-negative Ran, whereas nuclear import of beta-galactosidase (beta-gal)-fused MAPK (mol. wt 160 kDa), which occurred in response to stimuli, was completely blocked by these inhibitors. Moreover, while a dimerization-deficient mutant of MAPK was able to translocate to the nucleus upon stimulation, this mutant MAPK, when fused to beta-gal, became unable to enter the nucleus. These results suggest that monomeric and dimeric forms of MAPK enter the nucleus by passive diffusion and active transport mechanisms, respectively.  相似文献   

7.
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.  相似文献   

8.
The Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a “response regulator” protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinases. Here we show that Mcs4 has an unexpected, phosphorelay-independent function in promoting heteromer association between the Wis4 and Win1 MAPKKKs. Only one of the MAPKKKs in the heteromer complex needs to be catalytically active, but disturbing the integrity of the complex by mutations to Mcs4, Wis4, or Win1 results in reduced MAPKKK–MAPKK interaction and, consequently, compromised MAPK activation. The physical interaction among Mcs4, Wis4, and Win1 is constitutive and not responsive to stress stimuli. Therefore the Mcs4–MAPKKK heteromer complex might serve as a stable platform/scaffold for signaling proteins that convey input and output of different stress signals. The Wis4–Win1 complex discovered in fission yeast demonstrates that heteromer-mediated mechanisms are not limited to mammalian MAPKKKs.  相似文献   

9.
P Ferrigno  F Posas  D Koepp  H Saito    P A Silver 《The EMBO journal》1998,17(19):5606-5614
MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.  相似文献   

10.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

11.
12.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.  相似文献   

13.
14.
The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.  相似文献   

15.
Regulation of PRAK subcellular location by p38 MAP kinases   总被引:13,自引:0,他引:13       下载免费PDF全文
The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. p38 regulated/activated protein kinase (PRAK, also known as mitogen-activated protein kinase activated protein kinase 5 [MAPKAPK5]) functions downstream of p38alpha and p38beta in mediating the signaling of the p38 pathway. Immunostaining revealed that endogenous PRAK was predominantly localized in the cytoplasm. Interestingly, ectopically expressed PRAK was localized in the nucleus and can be redistributed by coexpression of p38alpha or p38beta to the locations of p38alpha and p38beta. Mutations in the docking groove on p38alpha/p38beta, or the p38-docking site in PRAK, disrupted the PRAK-p38 interaction and impaired the ability of p38alpha and p38beta to redistribute ectopically expressed PRAK, indicating that the location of PRAK could be controlled by its docking interaction with p38alpha and p38beta. Although the majority of PRAK molecules were detected in the cytoplasm, PRAK is consistently shuttling between the cytoplasm and the nucleus. A sequence analysis of PRAK shows that PRAK contains both a putative nuclear export sequence (NES) and a nuclear localization sequence (NLS). The shuttling of PRAK requires NES and NLS motifs in PRAK and can be regulated through cellular activation induced by stress stimuli. The nuclear content of PRAK was reduced after stimulation, which resulted from a decrease in the nuclear import of PRAK and an increase in the nuclear export of PRAK. The nuclear import of PRAK is independent from p38 activation, but the nuclear export requires p38-mediated phosphorylation of PRAK. Thus, the subcellular distribution of PRAK is determined by multiple factors including its own NES and NLS, docking interactions between PRAK and docking proteins, phosphorylation of PRAK, and cellular activation status. The p38 MAPKs not only regulate PRAK activity and PRAK activation-related translocation, but also dock PRAK to selected subcellular locations in resting cells.  相似文献   

16.
17.
The fission yeast Sty1 mitogen-activated protein (MAP) kinase (MAPK) and its activator the Wis1 MAP kinase kinase (MAPKK) are required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAPKs, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, UV light, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have recently identified two upstream regulators of the Wis1 MAPKK, namely the Wak1 MAPKKK and the Mcs4 response regulator. Cells lacking Mcs4 or Wak1, however, are able to proliferate under stressful conditions and undergo sexual differentiation, suggesting that additional pathway(s) control the Wis1 MAPKK. We now show that this additional signal information is provided, at least in part, by the Win1 mitotic regulator. We show that Wak1 and Win1 coordinately control activation of Sty1 in response to multiple environmental stresses, but that Wak1 and Win1 perform distinct roles in the control of Sty1 under poor nutritional conditions. Our results suggest that the stress-activated Sty1 MAPK integrates information from multiple signaling pathways.  相似文献   

18.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

19.
The leucine-rich nuclear export signal (NES) is used to shuttle large cellular proteins from the nucleus to the cytoplasm. The nuclear export receptor Crm1 is essential in this process by recognizing the NES motif. Here, we show that the oncogenic hepatitis B virus (HBV) X protein (HBx) contains a functional NES motif. We found that the predominant cytoplasmic localization of HBx is sensitive to the drug leptomycin B (LMB), which specifically inactivates Crm1. Mutations at the two conserved leucine residues to alanine at the NES motif (L98A,L100A) resulted in a nuclear redistribution of HBx. A recombinant HBx protein binds to Crm1 in vitro. In addition, ectopic expression of HBx sequesters Crm1 in the cytoplasm. Furthermore, HBx activates NFkappaB by inducing its nuclear translocation in a NES-dependent manner. Abnormal cytoplasmic sequestration of Crm1, accompanied by a nuclear localization of NFkappaB, was also observed in hepatocytes from HBV-positive liver samples with chronic active hepatitis. We suggest that Crm1 may play a role in HBx-mediated liver carcinogenesis.  相似文献   

20.
The Fas-associated death domain (FADD) adaptor protein FADD/Mort-1 is recruited by several members of the tumor necrosis factor receptor (TNFR) superfamily during cell death activated via death receptors. Since most studies have focused on the interaction of FADD with plasma membrane proteins, FADD's subcellular location is thought to be confined to the cytoplasm. In this report, we show for the first time that FADD is present in both the cytoplasm and the nucleus of cells, and that its nuclear localization relies on strong nuclear localization and nuclear export signals (NLS and NES, respectively) that reside in the death-effector domain (DED) of the protein. Specifically, we found that a conserved basic KRK35 sequence of the human protein is necessary for FADD's nuclear localization, since disruption of this motif leads to the confinement of FADD in the cytoplasm. Furthermore, we show that the leucine-rich motif LTELKFLCL28 in the DED is necessary for FADD's nuclear export. Functionally, mutation of the NES of FADD and its seclusion in the nucleus reduces the cell death-inducing efficacy of FADD reconstituted in FADD-deficient T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号