首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have identified and purified TH3, a germ cell-specific histone. It has been characterized by amino acid analysis, tryptic peptide mapping, labeling with cystine, and by electrophoretic mobility as a variant of H3. On fully reduced Triton/acid/urea gels its mobility is retarded more than that of the somatic variants H3.2 and H3.3, but less than that of H3.1; it migrates between the H2As and H1s. Germinal cells from adult and sexually immature testes were purified by centrifugal elutriation followed by Percoll density gradient separation in order to study the distribution and synthesis of TH3. TH3 is found in significant levels in spermatogonia and in similar or slightly higher amounts in spermatocytes and round spermatids. The synthesis of TH3 takes place in the spermatogonia but not in spermatocytes, in contrast to the other testis-specific histones, TH2A, H1t, and TH2B. Therefore, TH3 may have a different role in spermatogenesis than do the other testis-specific histone variants.  相似文献   

2.
We have cloned cDNA of a testis-specific histone, TH2B (a variant of H2B), and rat somatic H2B gene to investigate regulation of testis-specific histone genes during rat spermatogenesis. The amino acid sequences deduced from DNA sequences show extensive sequence divergence in the N-terminal third of the two histones. The rest is highly conserved. One cysteine residue was found in TH2B. No cysteine is present in somatic histones except in H3 histone. We investigated the expression of TH2B and H2B genes using the regions of sequence divergence as hybridization probes. The TH2B gene is expressed only in the testis, and the expression of this gene is detected 14 days after birth, reaching a maximum at Day 20. The level of H2B mRNA shows a reciprocal pattern. This contrasting pattern can be explained by the gradually changing proportion of spermatogonia and spermatocytes with testicular maturation. In situ cytohybridization studies show that H2B gene is expressed primarily in proliferating spermatogonia and preleptotene spermatocytes, whereas TH2B gene is expressed exclusively in pachytene spermatocytes which first appear in testis about 14 days after birth. H2B and TH2B genes appear to be ideal markers for the study of proliferation and differentiation events in spermatogenesis and their regulatory mechanisms.  相似文献   

3.
A quantitative analysis of the different types of germ cells present in the seminiferous tubules of vitamin A-deficient-retinoate maintained rats revealed that the number of pachytene spermatocytes and spermatogonia was greatly reduced in the deficient rats. Spermatids were virtually absent in the deficient tubules which contained mostly spermatogonia and preleptotene spermatocytes along with the Sertoli cells. There was no change in the number of Sertoli cells present in the tubules of deficient rats as compared to that of normal rats. Following supplementation of retinyl acetate to vitamin A-deficient-retinoate maintained rats, there was an immediate thinning of the germinal epithelium resulting from the sloughing off of the damaged spermatocytes which were beyond repair. However, after 12 days of vitamin A supplementation fresh batch of pachytene spermatocytes started appearing while by day 16 round spermatids could be seen. Analysis of the acid soluble proteins from nuclei on different types of Polyacrylamide gel electrophoretic systems has revealed that the levels of the testis specific histone variants Hlt, TH2A and TH2B, synthesized predominantly in the pachytene spermatocytes were greatly reduced in the testes of retinoate maintained rats. Following supplementation of retinyl acetate for either 4 days or 8 days the levels of these histone variants further decreased which correlated with the decrease in the number of pachytene spermatocytes. However, by day 12 of supplementation onwards, their levels started increasing and reached near normal levels by day 24 of vitamin A-supplementation  相似文献   

4.
Expression of the testis-specific histone TH2B, the phosphoprotein p19, and the transition proteins TP1 and TP2, was localized in the rat testis and quantified, using in situ hybridization of their mRNAs with radiolabeled probes and image analysis. In a first study, expression was assessed during testicular development between day 2 and day 65 postpartum. TH2B mRNAs appeared first in preleptotene spermatocytes (PL) on day 12 and in pachytene spermatocytes (PS) on day 18; p19 mRNAs were present in PS from day 18 onward, and TP1 and TP2 mRNAs were detected in round spermatids (RS) from day 32 onward. In the second trial, the expression of these four genes was studied throughout the cycle of spermatogenic epithelium in mature animals. TH2B mRNAs were localized in B spermatogonia at stage V, and in PL at stages VII and VIII but no longer in leptotene and zygotene spermatocytes. Thereafter, TH2B mRNAs were observed in PS from stages III–IV to XIII. The steady-state mRNA level per cell was high in PS with a maximum at stages IX–X. p19 mRNAs were present in PS from stages III–IV onward and in RS up to stages 1–2 of spermiogenesis. The maximum mRNA level per cell was observed in PS between stages VII and XIII. The presence of TP1 mRNAs was restricted to spermatids from steps 6 to 15–16 of spermiogenesis while TP2 mRNAs were detected in spermatids only between step 7 and step 13. The highest steady-state amounts of mRNAs were observed between step 7 and step 14 for TP1 and between step 10 and step 12 for TP2. Mol. Reprod. Dev. 51:22–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The pattern of ribonucleic acid synthesis during germ cell development, from the stem cell to the mature spermatid, was studied in the mouse testis, by using uridine-H3 or cytidine-H3 labeling and autoradiography. Incorporation of tritiated precursors into the RNA occurs in spermatogonia, resting primary spermatocytes (RPS), throughout the second half of pachytene stage up to early diplotene, and in the Sertoli cells. Cells in leptotene, zygotene, and in the first half of pachytene stage do not synthesize RNA. No RNA synthesis was detected in meiotic stages later than diplotene, with the exception of a very low rate of incorporation in a fraction of secondary spermatocytes and very early spermatids. At long intervals after administration of the tracer, as labeled cells develop to more mature stages, late stages of spermatogenesis also become labeled. The last structures to become labeled are the residual bodies of Regaud. Thus, the RNA synthesized during the active meiotic stages is partially retained within the cell during further development. The rate of RNA synthesis declines gradually with the maturation from type A to intermediate to type B spermatogonia and to resting primary spermatocytes. "Dormant" type A spermatogonia synthesize little or no RNA. The incorporation of RNA precursors occurs exclusively within the nucleus: at later postinjection intervals the cytoplasm also becomes labeled. In spermatogonia all mitotic stages, except metaphase and anaphase, were shown to incorporate uridine-H3. RNA synthesis is then a continuous process throughout the cell division cycle in spermatogonia (generation time about 30 hours), and stops only for a very short interval (1 hour) during metaphase and anaphase.  相似文献   

6.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

7.
Nuclear basic proteins from morphologically and functionally mature sperm of Xenopus laevis were analyzed by acid/urea/Triton X-100 polyacrylamide gel electrophoresis (AUT-PAGE). Six sperm-specific proteins (SP1-6) were identified in addition to somatic histones H3, H4 and smaller amount of H2A and H2B, but not H1. Of these, SP3–6 were unique in containing 33–41% arginine and having very low lysine/arginine ratios, while SP2 was more similar to H3 and H4 in having a lower arginine and higher lysine content. Fractionations of testicular cells at different spermatogenic stages by unit gravity sedimentation showed that primary spermatocytes and acrosomal vesicle spermatids possess typical somatic type histones but no SPs. Injection of [14C]-arginine into the testis and its tracing by fluorography on AUT-PAGE gels indicated that all somatic histones are synthesized during the stages between spermatogonia and primary spermatocytes, whereas SPs are synthesized at differentially regulated rates during the stages after acrosomal vesicle formation. In indirect immunofluorescence studies with anti-SP3-5 rabbit antiserum, a positive reaction was observed in the last step of spermiogenesis after the commencement of nuclear coiling.  相似文献   

8.
9.
[3H]Leucine incorporation into histones of seminiferous epithelial cells of hypophysectomized rats was used to calculate the molar proportions of the core histones of spermatogonia. The molar proportions H3:H2B:(H2A + protein A24):H4 are 1:1:1:1, viz. identical with those reported by others for somatic cells. Similar results were obtained when molar proportions of histones of seminiferous epithelial cells from immature rat testis (predominantly populated with spermatogonia) were determined by the dye-binding method. These data are relevant to mechanisms for the replacement of some of the core histones by variants during the primary spermatocyte stages.  相似文献   

10.
Transilluminated seminiferous tubules were staged and utilized to determine the distribution of nuclear pore complexes in seminiferous tubules of the rat. Segments of seminiferous tubules of adult albino rats were separated and identified (in stages VII-VIII, IX-XI, XII-XIV, and V-VI), and then processed by freeze-fracture. Type A spermatogonia, the only spermatogonia located in seminiferous segments possessing stages IX-XI and XII-XIV, are oval cells in contact with the basal lamina. They either exhibit a random distribution of nuclear pores or a slight degree of clumping. Type B spermatogonia, found in segments possessing stages V-VI, exhibit, instead, a noticeable pore clustering. The identification of intermediate spermatogonia was not undertaken in this study. Preleptotene spermatocytes are easily identified in freeze-fracture by their location in segments with stages VII-VIII, by their arrangement in numerous groups between the basal lamina and the pachytene spermatocytes, and by their comparatively small size. They exhibit noticeable pore clustering. Leptotene (segments containing stages IX-XI) and zygotene (XII-XIV) spermatocytes show a more homogeneous distribution of nuclear pores. Pachytene spermatocytes are identified by their large size, by consistent detachment from the basal lamina and by being rather numerous and found in all the stages explored. Diplotene spermatocytes have the largest nuclei of all germ cells. They are always detached from the basal lamina and found only in seminiferous segments containing stage XIII. Pachytenes display a regular geometric array of pore aggregation with striking clustering, whereas diplotene nuclear pores takes on a random distribution. Secondary spermatocytes, only present in stage XIV intermingled with metaphase-anaphase profiles, are characterized in replicas by a paucity of evenly distributed nuclear pores.  相似文献   

11.
The paper describes in detail the cytomorphology of different types of germ cells, the 10 typical cellular associations or stages of the cycle of seminiferous epithelium (CSE), frequency of appearance of these stages, pattern of spermatogonial stem cell renewal and per cent degeneration of various germ cells in R. leschenaulti. Of the 14 steps of spermiogenesis (stained with PAS-haematoxylin) the first 10 were associated with the stages I-X, whereas, the remaining were found in association with one of the first six stages. The frequency of appearance of the various stages ranged from 3.84% (stage V) to 19.84% (stage I). These observations indicate that stage V is of shortest duration and stage I is of the longest duration in the bat. Five types of spermatogonia (A1, A2, A3, In and B) were identified based on their shape, size and nuclear morphology. Type A spermatogonia are oval with a large nucleus containing 1 or 2 nucleoli. The chromatin showed progressive condensation from A1 to A3 so that the latter appeared darkest among all the A type spermatogonia. The In type derived from A3 are smaller but appear darker than A3 due to heterochromatin crusts along the inner border of the nucleus. The B type spermatogonia derived from In are round and possess single nucleolus. The B type spermatogonia divided mitotically before entering meiosis or the actual production of the primary spermatocytes. The various spermatogonia divided mitotically at fixed stages of the cycle giving rise to their next generations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

14.
15.
16.
Summary Sulfhydryl oxidase (SOx) is an enzyme that catalyzes the oxidation of sulfhydryl compounds. It is present in mitochondria of certain testicular cells at specific stages of functional activation. In the mature human testis moderate SOx immunoreactivity is found in Leydig cells, and lacking in Sertoli and in peritubular cells. The Adark spermatogonia usually contain immuno-reactive mitochondria, while in Apale spermatogonia immunoreactivity is mostly low. In stage V of spermatogenesis, Apale spermatogonia were found containing immunoreactive material. Leptotene (stages IV and V) and zygotene (stage VI) primary spermatocytes display a moderate immunoreaction. It is strongest in pachytene spermatocytes of stages I–IV, decreases in stage V, and is low during diakinesis and in secondary spermatocytes. Late spermatids usually show a stronger immunoreactivity than early spermatids. At stage V of spermatogenesis the late spermatids contain only few immunoreactive particles. Spermatozoa are free of SOx-immunoreactive mitochondria. In residual bodies small amounts of SOx-immunoreactive particles are seen. Compared to rat and hamster testis, SOx immunoreactivity of the human testis is less clearly stage-dependent and it is not confined to certain germ cell stages. As deduced from the findings in patients with spermatogenic disorders, the SOx immunoreactivity of spermatogonia in human testis seems to be of diagnostic relevance.  相似文献   

17.
In eukaryotic cells, the major protein constituents of the chromatin are histones, which can be divided into five classes, identified as H1, H2A, H2B, H3 and H4. During normal spermatogenesis, a testis-specific H1t is expressed in primary spermatocytes and believed to facilitate histone to protamine exchanges during spermiogenesis. In equine testes we detected the H1 protein at 22kDa by western blot analysis while H1t was detected at 29kDa. H1 protein was found to be expressed in all germ cells up to elongating spermatids (Sc) at stage IV. In peripubertal animals, there was a prolonged expression up to elongating spermatids (Sd1) at stage V. A fragment of the equine H1t gene was cloned (GenBank Accession No. AJ865320). The mRNA expression of H1t was found at the level in spermatogonia and in primary spermatocytes up to mid-pachytene at stage VIII/I, whereas H1t protein was found to be expressed up to round spermatides (Sa/Sb1) at stage VIII/I. In peripubertal animals, the H1t protein expression was detected up to elongating spermatids (Sb2) at stage II. Analysis of testes of different ages (< or =2 years) and (> or =3 years) by real-time RT-PCR revealed an increase of H1t mRNA expression, with a wide range of individual variety between 2 and 4 years old animals indicating a stable expression in animals older than 4 years old. This is the first study to show the testis-specific H1t in the stallion and gives evidence that the well-known peripubertal infertility in the stallion may be related to an insufficient histone to protamine exchange. The pattern of protamine gene expression, however, has still to be elucidated.  相似文献   

18.
Morphometric study revealed that, at 40 days after the start of vitamin A replacement, A1 spermatogonia and preleptotene spermatocytes appeared in more than 70% of the whole mounts of seminiferous tubules of vitamin A-deficient rats. By 42 days, the appearance of these cell types was reduced by 50%, and A2 and A3 spermatogonia were predominant. By 46 days, A1-A3 spermatogonia appeared in less than 30% of the tubular length while A4, intermediate and B spermatogonia became the major cell types in the basement compartment of seminiferous tubules. The predominance of spermatogonia noted at given times was corroborated by higher frequencies of tubular cross-sections of stages in which that particular type of spermatogonium resides. These results indicate that seminiferous tubules of vitamin A-replaced-vitamin A-deficient rats are 'enriched' for particular stages. Tracing the development of [3H]thymidine-labelled preleptotene spermatocytes revealed normal kinetics of germ cell differentiation in these animals. Furthermore, the spermatogonial proliferations in the vitamin A-replaced-vitamin A-deficient rats were quantitatively normal. We suggest that vitamin A replacement may result in temporal suppression of the differentiation of A2-B spermatogonia, leading to a stimulation or synchronization of certain groups of undifferentiating spermatogonia which undergo active proliferation simultaneously. These synchronized populations of spermatogonia continue to proliferate and differentiate, thus resulting in the stage-enrichments noted at later times.  相似文献   

19.
目的为探究连接组蛋白H1在精子发生过程染色体重构中的功能,了解一共有多少种连接组蛋白H1参与各期生精细胞的染色体的构建。方法分离高纯度的SD大鼠的各期生精细胞,提取组蛋白,应用SDS-PAGE分离组蛋白的各组分,组蛋白(H1)经过蛋白酶(Glu-c和Arg-c)酶切,应用质谱进行检测。结果鉴定了组蛋白H1的体细胞亚型(H1.1-H1.5)和睾丸特异的连接组蛋白亚型(H1t)。组蛋白H1t分别表达在精原细胞,精母细胞和圆形精子细胞中。结论大鼠精子发生过程中,其主要连接组蛋白H1的种类是:H1.1-H1.5和H1t。  相似文献   

20.
The gene encoding H1t, a testicular variant of histone H1, is expressed in mammals during spermatogenesis. Northern blot and in situ hybridization has detected H1t mRNA only at the stage of pachytene spermatocytes. We have extended this analysis to more sensitive approaches and demonstrate, by RNase protection and electron-microscopic in situ hybridization, that H1t mRNA is detectable even in spermatogonia. Just a faint H1t band is seen in Western blots of nuclear protein from 9-day-old mice. This indicates that the H1t gene is expressed at premeiotic stages, albeit at a low level. In contrast to H1t mRNA, the H1t protein has not been detected in spermatogonia by electron microscopy after immunogold staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号