首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rabbit cerebellum has been shown to contain significant quantities of opioid receptors consisting of both mu- and kappa-subtypes. To determine the nature of the endogenous opioid ligands in this tissue, extracts from rabbit cerebellum were separated by various chromatography techniques and fractions were assayed initially for opioid peptides with a radioimmunoassay capable of detecting all peptides with an amino-terminal Tyr-Gly-Gly-Phe sequence. This sequence is common to all mammalian opioid peptides and is critical for recognition by all known opioid receptors. Each of the three immunoreactive opioid peptide peaks detected was purified to homogeneity and subjected to amino acid composition and sequence analysis. One peak was analyzed further by mass spectrometry. This identified the major opioid peptides in the cerebellum as [Met5]enkephalin, [Leu5]enkephalin, and heptapeptide [Met5]enkephalyl-Arg6-Phe7. The comprehensiveness of this initial detection scheme in identifying biologically active opioid peptides was substantiated through subsequent analysis. Using specific radioimmunoassays for representative opioid peptides of the three opioid systems currently known, no other peptides of either the proenkephalin, proopiomelanocortin, or prodynorphin series were detected in any appreciable amounts. Collectively, these results are consistent with the position that rabbit cerebellar opioids are derived from proenkephalin. However, given that no appreciable quantities of either [Met5]enkephalyl-Arg6-Arg7-Val8-NH2 (metorphamide) or [Met5]enkephalyl-Arg6-Gly7-Leu8 were detected suggests that rabbit proenkephalin may have a slightly altered sequence and/or is differentially processed relative to other mammalian species studied.  相似文献   

2.
Abstract

The three endogenous opioid precursors of almost 30000 Da are pro-opiocortin, proenkephalin and prodynorphin. Pro-opiocortin contains β-endorphin, melanotropins and ACTH. Proenkephalin yields one [Leu5] enkephalin, three [Met5] enkephalins, one [Met5] enkephalyl-Arg-Arg-Val-NH2 (metorphamide or adrenorphin), one [Met5] enkephalyl-Arg-Gly-Leu and one [Met5] enkephalyl-Arg-Phe. [Leu5] enkephalin is common to all fragments of prodynorphin; its carboxyl extension by Arg-Lys leads to α- and β-neo-endorphin and its carboxyl extension by Arg-Arg gives two dynorphins A and B of 17 and 13 amino acids, respectively. Another endogenous peptide is dynorphin A (1-8). The three main opioid binding sites are μ, δ and ?. Their analysis has been facilitated by the synthesis of analogues of peptides and non-peptide compounds, which have selective agonist or antagonist action at only one site. The various physiological roles of the three types of the opiate receptor have so far not been sufficiently investigated.  相似文献   

3.
Abstract: The primary sequence of adrenal proenkephalin was recently deduced from the structure of the cloned cDNA that codes for this protein. Several enkephalin-containing proteins with molecular weights between 8,000 and 20,000 daltons were purified from the bovine adrenal medulla. These proteins appear to represent intermediates in the processing of proenkephalin into physiologically active opioid peptides. While the concentrations of these large processing intermediates in the adrenal medulla are quite high, similar proteins have not yet been shown to be present in brain, and there is some question as to whether the brain synthesizes an enkephalin precursor similar to adrenal proenkephalin. We report here the purification from bovine caudate nucleus of synenkephalin, the N-terminal fragment of adrenal proenkephalin. The amino acid composition of synenkephalin indicates that the protein represents residues 1–70 of adrenal proenkephalin. Thus the brain and adrenal glands appear to utilize a similar precursor for enkephalin biosynthesis.  相似文献   

4.
We have developed a method that is based on two HPLC systems and permits the separation of endogenous opioid peptides in tissue extracts. The individual peptides are bioassayed on the mouse isolated vas deferens; naloxone (100 nM) ensures opioid specificity. In the myenteric plexus-longitudinal muscle preparation of the guinea-pig small intestine, the tissue content of prodynorphin-derived peptides is lower than those of proenkephalin-derived peptides. No beta-endorphin was detected. Of the prodynorphin fragments, alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), and dynorphin B are present in equimolar concentrations (12-15 pmol/g) whereas the tissue content of dynorphin A is only 0.8 pmol/g. Processing of proenkephalin leads to at least six opioid peptides. The tissue contents of [Leu5]enkephalin, [Met5]enkephalyl-Arg-Gly-Leu, and [Met5]enkephalyl-Arg-Phe are 90-100 pmol/g and the content of [Met5]enkephalin is 405 pmol/g. BAM-18 and [Met5]enkephalyl-Arg-Arg-Val-NH2 are present in much lower concentrations, 24 and 5 pmol/g, respectively. Although present in low amounts, BAM-18 and [Met5]-enkephalyl-Arg-Arg-Val-NH2 have high affinity for the mu-opioid binding site and to a lesser extent for the kappa-site; this binding profile differs from that of the other proenkephalin fragments all of which have high affinities for the mu- and delta-sites.  相似文献   

5.
Z Hostomsky  J Smrt  V Paces 《Gene》1985,39(2-3):269-274
Enkephalins are pentapeptides with opioid activity that have been found in brain and other neural tissues. They are released by proteolytic processing of the proenkephalin, which contains several enkephalin sequences each flanked by pairs of basic amino acid (aa) residues. We have constructed an artificial variant of the proenkephalin gene by concatenation of synthetic oligodeoxynucleotides (oligo) coding for Met-enkephalin preceded by two arginines. One of the resulting structures, containing eleven enkephalin sequences separated by pairs of arginine codons, was cloned in the expression vector pRE31. The biological activity of enkephalin was detected after the digestion of the isolated plasmid-coded protein with trypsin and carboxypeptidase B. The product of the synthetic gene may thus serve as a defined simplified substrate for the study of the not yet fully understood enzymatic mechanisms of proenkephalin processing.  相似文献   

6.
Certain general principles determine the biosynthesis of most biologically active peptides, including the opioid peptides, from large protein precursors. In almost all instances, the active peptide is embedded in the precursor flanked on both sides by pairs of basic amino acids. The first step in processing involves a trypsinlike enzyme, cleaving to the carboxyl terminus of basic amino acids, and leaving the active peptide with a basic amino acid on the carboxyl terminus. A carboxy-peptidase peptidase B-like enzyme then removes the remaining basic amino acid. It has been unclear whether any endopeptidases with trypsinlike activity are selective for one or another basic amino acid. Recently a soluble endopeptidase has been identified that can cleave to both the carboxyl and amino termini of basic amino acids. Enkephalin convertase (carboxypeptidase E, H) (EC 3.4.17.10) has considerable selectivity, and appears to be physiologically associated with the biosynthesis of enkephalin as well as a limited number of other neuropeptides. The turnover of opioid peptides and other neuropeptides is most effectively ascertained by measuring levels of mRNA either biochemically or by in situ hybridization. Striking dynamic alterations include a pronounced increase in levels of proenkephalin mRNA in the corpus striatum after blockade of dopamine receptors, but changes in opioid peptide mRNA after opiate addiction are less clear.  相似文献   

7.
Types of opioid receptors: relation to antinociception   总被引:5,自引:0,他引:5  
The endogenous opioid peptides are derived from three large precursors. Pro-opiocortin and proenkephalin yield [Met]enkephalin, carboxy-extended [Met]enkephalins and [Leu]enkephalin. The fragments of prodynorphin are all carboxy-extended [Leu]enkephalins. Three approaches are of importance for an analysis of the physiological functions of the different endogenous opioid peptides. First, since these peptides interact with more than one of the mu-, delta- and kappa-binding sites and thus with their receptors, it is necessary to synthesize peptides or non-peptides, which bind to only one of the sites. As far as narcotic analgesics are concerned, morphine fulfils these conditions since it interacts almost exclusively with the mu-receptor. Secondly, antagonists are required that are selective for only one of the opioid receptors, even when used in high concentrations. Finally, it is important to find circumscribed areas in the nervous system that possess only one type of opioid receptor. It is now known that in the rabbit cerebellum the opioid receptors are almost exclusively of the mu-type whereas in the guinea-pig cerebellum they are almost exclusively of the kappa-type.  相似文献   

8.
Wang H  Dass C 《Peptides》2002,23(12):2143-2150
A method based upon a combination of fast high-performance liquid chromatography (HPLC) and electrospray ionization (ESI)–mass spectrometry (MS) is developed for the analysis of bioactive peptides in bovine adrenal medulla. The fast HPLC uses a short column (33 mm×4.6 mm) packed with nonporous silica-based C-18 stationary phase. Prior to HPLC separation, the medulla was homogenized and the peptide-rich fraction was isolated from it by solid-phase extraction. In-source collision-induced dissociation and tandem MS were used to obtain the sequence of the suspected peptides. Several peptides, including Met–Enk, Leu–Enk, Leu–Enk–Lys, bovine adrenal medullary (BAM)-12 (Met–Enk–RRVGRPE), Leu–Enk–Arg, and YGGT, were unambiguously identified. The first four peptides are the products of proenkephalin A precursor protein and Leu–Enk–Arg belongs to the dynorphin family and is derived from proenkephalin B (prodynorphin) precursor. The database search revealed that YGGT is a part of the sequence of five different precursor proteins.  相似文献   

9.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

10.
DNA probes derived from rat and human proenkephalin and prodynorphin genes have been used to localize these two opiate neuropeptide genes on human chromosomes. Hybridization of probes to Southern blots made with DNAs from a rodent-human somatic-cell hybrid panel indicates localization of proenkephalin to human chromosome 8 and of prodynorphin to human chromosome 20. In situ hybridization to metaphase chromosomes confirms these assignments and indicates regional localizations of proenkephalin to 8q23-q24 and of prodynorphin to 20p12-pter. A human genomic prodynorphin clone reveals a frequent two-allele TaqI polymorphism.  相似文献   

11.
The enkephalins are present in many tissues not only as the free pentapeptides, but also as internal sequences in larger polypeptides of varying size. Fourteen enkephalincontaining peptides (EC peptides) from beef adrenal medulla were isolated and sequenced, and the presence of a protein that contained several [Met]enkephalin sequences and one of [Leu]enkephalin was demonstrated. Because the latter was assumed to represent the gene product, it was named proenkephalin. Sequence data from the EC peptides made possible the synthesis of a polynucleotide probe with essentially no degeneracy and permitted the cloning of a partial proenkephalin cDNA. The complete structure of proenkephalin was deduced from both peptide and cDNA sequencing data. Proenkephalin is now known to be one of three enkephalin-containing gene products, each of which gives rise to many physiologically active peptides.  相似文献   

12.
By using a plethora of region-specific antisera, this light microscopic immunohistochemical study revealed that derivatives from the three opioid precursors, i.e. proenkephalin, prodynorphin and proopiomelanocortin are differentially distributed in the pineal gland of guinea pig. Various molecular forms of immunoreactive opioid peptides derived from proenkephalin or prodynorphin were present in a minority of pinealocytes as well as in nerves. In contrast to this dual distribution pattern of opioid-active peptides, the opioid-inactive derivative from proopiomelanocortin, alpha-melanocyte stimulating hormone, was exclusively present in a large proportion of pinealocytes. A multiple and differential origin and function of opioidergic pineal innervation involving sympathetic, parasympathetic and sensory components is suggested. alpha-MSH is proposed as a pineal hormone which may act in concert with melatonin to regulate pineal rhythms or may function like MSH of pituitary origin.  相似文献   

13.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

14.
《The Journal of cell biology》1995,130(6):1251-1262
Neuropeptide precursors are traditionally viewed as molecules destined to be cleaved into bioactive peptides, which are then released from the cell to act on target cell surface receptors. In this report we demonstrate nuclear localization of the enkephalin precursor, proenkephalin, in rodent and human embryonic fibroblasts (Swiss 3T3 and MRC-5 cells) and in rodent myoblasts (C2C12 cells). Nuclear proenkephalin, detected by immunofluorescence with a panel of antiproenkephalin monoclonal antibodies, is distributed predominantly in three patterns. Selective abolition of these patterns with salt, nuclease, or methanol is associated with liberation of immunoprecipitable proenkephalin into the extraction supernatant. Proenkephalin antigenic domains, mapped using phage display libraries and synthetic peptides, are differentially revealed in the three distribution patterns. Selective epitope revelation may reflect different conformational forms of proenkephalin or its existence in complexes with other nuclear proteins, forms which therefore have different biochemical associations with the nuclear substructure. In fibroblast cell populations in transition to growth arrest, nuclear proenkephalin responds promptly to mitogen withdrawal and cell-cell contact by transient, virtually synchronous unmasking of multiple antigenic domains in a fine punctate distribution. A similar phenomenon is observed in myoblasts undergoing differentiation. The acknowledgment of growth arrest and differentiation signals by nuclear proenkephalin suggests its integration with transduction pathways mediating these signals. To begin to address the mechanism of nuclear targeting, we have transfected mutated and nonmutated proenkephalin into COS (African green monkey kidney) cells. Nonmutated proenkephalin is localized exclusively in the cytoplasm; however, proenkephalin mutated at the first ATG codon, or devoid of its signal peptide sequence, is targeted to the nucleus as well as to the cytoplasm. From this we speculate that nuclear proenkephalin arises from a primary translation product that lacks a signal peptide sequence because of initiation at a different site.  相似文献   

15.
16.
SK-N-MC cells have recently been shown to be a rich source of proenkephalin and/or the proenkephalin-derived peptide, peptide B. We have investigated the synthesis and the posttranslational processing of proenkephalin in these cells. SK-N-MC cells retain very little of the proenkephalin synthesized; greater than 99% of the immunoreactive enkephalin synthesized within a 48-h period is secreted into the medium rather than contained intracellularly. When medium samples were subjected to gel filtration and assayed for the various enkephalins present within proenkephalin, only two major molecular-weight classes of peptides, with molecular weights and immunoreactive profiles consistent with those of proenkephalin and the 3.6-kDa carboxyl-terminal fragment peptide B, were observed. The proenkephalin-like peptide present in medium samples was shown by western blot procedures to consist of a 32-kDa protein with a slight amount of a higher-molecular-weight immunoreactive component above it. Only proenkephalin-sized peptides were present within cell extracts. Radiolabeled proenkephalin added to cell cultures was also cleaved to products similarly sized to those found in medium extracts; radiolabeled proenkephalin incubated in the absence of cells was not cleaved. Cleavage of exogenous proenkephalin thus probably at least partially occurs following secretion. Cell radiolabeling experiments with [32P]orthophosphate demonstrated that SK-N-MC proenkephalin is phosphorylated. Microheterogeneity of proenkephalin was also observed using isoelectric focusing coupled with western blotting. Our results suggest that the SK-N-MC cell line represents a useful model to study the earliest steps of the posttranslational processing of human proenkephalin in a neuronal cell type.  相似文献   

17.
L Terenius  F Nyberg 《Life sciences》1987,41(7):805-808
The opioid peptides present extraordinary problems for analysis, since they are structurally homologous yet substantially different. Within each of the three systems, proopiomelanocortin, proenkephalin and prodynorphin, a whole set of peptides of successively smaller sizes are generated. The biological relevance of the different peptides is not fully understood. Analytical strategies may either be specifically directed to individual peptide species or to identification of total system output.  相似文献   

18.
The adult rat cerebellum has minimal enkephalin immunoreactivity and is devoid of opiate-binding activity. Using novel monoclonal antibodies to the mammalian enkephalin precursor, we describe the immunofluorescent detection of proenkephalin, in the absence of mature enkephalin peptides, in subpopulations of rat cerebellar neurons and astrocytes. In cryostat sections, neurons that express proenkephalin include Golgi cells, macroneurons within deep cerebellar nuclei and a subpopulation of Purkinje cells. Proenkephalin messenger RNA and protein are present in subpopulations of both grey and white matter astrocytes, but not Bergmann glia. In dissociated glial culture, proenkephalin is expressed in process-bearing astrocytes, apparently in association with a subset of intermediate filaments. Proenkephalin within astrocytes is not seen until the second postnatal week and increases through to adulthood. Neuropeptide gene expression adds to the growing range of neuronal-type properties glial cells can display.  相似文献   

19.
The DNA sequence of the ompC gene which encodes one of the outer membrane porins has been determined. The gene appears to encode a secretory precursor of OmpC protein consisting of a total of 367 amino acid residues with a signal peptide of 21 amino acid residues at its NH2-terminal end. The 5' end noncoding region including the promoter of the ompC gene is extremely [A-T]-rich, and the codon usage in the ompC gene is unusual as are those in genes for other abundant outer membrane proteins. The promoter sequence of the ompC gene was compared with that of the ompF gene, both of which are controlled by the osmoregulatory operon, ompB. The deduced amino acid sequence of the OmpC protein showed extensive homology with that of the other porins (OmpF and PhoE proteins). The homology in the primary amino acid sequences, as well as the coding DNA sequences among the porins, indicates that the structural genes for the three porins evolved from a common ancestral gene. Comparison of the amino acid sequences among the OmpC, OmpF, and PhoE porins will be discussed with regard to structure and function.  相似文献   

20.
We have used antisera directed towards eight different portions of the proenkephalin molecule to examine the processing rates and patterns of proenkephalin-derived peptides in chromaffin cell cultures in the presence and absence of reserpine. Reserpine treatment produced profound effects on the molecular weight profile of nearly all enkephalin-containing peptides. Increased production of low molecular weight immunoreactive [Met5]enkephalin, [Leu5]enkephalin, [Met5]enkephalin-Arg6-Gly7-Leu8, and [Met5]enkephalin-Arg6-Phe7 was observed in reserpine-treated cultures; immunoreactivity corresponding to several intermediate sized enkephalin-containing peptides such as Peptide B and the high molecular weight [Met5]enkephalin-Arg6-Gly7-Leu8 immunoreactive peptide was decreased. The production of two amidated opioid peptides, amidorphin and metorphamide, was greatly accelerated in the presence of reserpine. The increased levels of low molecular weight enkephalins could not be accounted for by assuming decreased basal release. These results indicate that reserpine treatment is able to increase the extent of post-translational processing of proenkephalin within chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号