首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

2.
Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   

3.
Rhizobium leguminosarum bv. trifolii SRDI943 (strain syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium michelianum Savi cv. Paradana that had been grown in soil collected from a mixed pasture in Victoria, Australia. This isolate was found to have a broad clover host range but was sub-optimal for nitrogen fixation with T. subterraneum (fixing 20-54% of reference inoculant strain WSM1325) and was found to be totally ineffective with the clover species T. polymorphum and T. pratense. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI943, together with genome sequence information and annotation. The 7,412,387 bp high-quality-draft genome is arranged into 5 scaffolds of 5 contigs, contains 7,317 protein-coding genes and 89 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   

4.
Rhizobium leguminosarum bv. trifolii WSM2012 (syn. MAR1468) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an ineffective root nodule recovered from the roots of the annual clover Trifolium rueppellianum Fresen growing in Ethiopia. WSM2012 has a narrow, specialized host range for N2-fixation. Here we describe the features of R. leguminosarum bv. trifolii strain WSM2012, together with genome sequence information and annotation. The 7,180,565 bp high-quality-draft genome is arranged into 6 scaffolds of 68 contigs, contains 7,080 protein-coding genes and 86 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   

5.
6.

Aims

The aim of this study was investigation of the response of R. leguminosarum bv. trifolii wild-type and its two rosR and pssA mutant strains impaired in exopolysaccharide (EPS) synthesis to oxidative stress conditions caused by two prooxidants: a superoxide anion generator- menadione (MQ) and hydrogen peroxide (H2O2).

Methods

The levels of enzymatic (catalase, superoxide dismutase, pectinase and β-glucosidase) and non-enzymatic (superoxide anion generator, formaldehyde, phenolic compounds) biomarkers were monitored using biochemical methods in both the supernatants and rhizobial cells after treatment with 0.3?mM MQ and 1.5?mM H2O2. The viability of bacterial cells was estimated using fluorescent dyes and confocal laser scanning microscopy. In addition, the effect of prooxidants on symbiosis of the R. leguminosarum bv. trifolii strains with clover was established.

Results

The tested stress factors significantly changed enzymatic patterns of the rhizobial strains, and the wild-type strain proved to be more resistant to these prooxidants than both pssA and rosR mutants. Significantly higher activities of both catalase and superoxide dismutase have been detected in these mutants in comparison to the wild-type strain. H2O2 and MQ also increased the levels of pectinase and β-glucosidase activities in the tested strains. Moreover, pre-incubation of R. leguminosarum bv. trifolii strains with the prooxidants negatively affected the viability of bacterial cells and the number of nodules elicited on clover plants.

Conclusions

EPS produced in large amounts by R. leguminosarum bv. trifolii plays a significant protective role as a barrier against oxidative stress factors and during symbiotic interactions with clover plants.  相似文献   

7.
An JH  Lee HY  Ko KN  Kim ES  Kim YS 《Molecules and cells》2002,14(2):261-266
The role of malonate in symbiotic nitrogen metabolism has long been controversial, although it is known to occur in legume roots, especially in the nodules. Here we report that malonate metabolism plays a key role in the differentiation of bacteroids Rhizobium leguminosarum bv. trifolii in clover nodules. An operon, mat, that consists of three consecutive genes (matABC) has been discovered. Mat encodes enzymes that catalyze the uptake and conversion of malonate to acetyl-CoA through malonyl-CoA. A mutant bacteria, which replaced matB that encodes malonyl-CoA synthetase with a kanamycin resistant gene, was generated and infected with white clover. Clover growth was considerably reduced, even though nodules were formed. However, the nodules were filled with vacuoles, but not with bacteroids. This indicates that malonate metabolism is an important requirement for the formation of mature nodules that are filled with bacteroids.  相似文献   

8.
Pseudomonas sp. strain 267 isolated from soil promoted growth of different plants under field conditions and enhanced symbiotic nitrogen fixation in clover under gnotobiotic conditions. This strain produced pyoverdine-like compound under low-iron conditions and secreted vitamins of the B group. The role of fluorescent siderophore production in the beneficial effect of strain 267 on nodulated clover plants was investigated. Several non-fluorescent (Pvd-) Tn5 insertion mutants of Pseudomonas sp. strain 267 were isolated and characterized. The presence of Tn5 insertions was confirmed by Southern analysis of EcoRI digested genomic DNA of each derivative strain. The siderophore-negative mutants were compared to the parental strain with respect to their growth promotion of nodulated clover infected with Rhizobium leguminosarum bv. trifolii 24.1. We found that all isolated Pvd- mutants stimulated growth of nodulated clover plants in a similar manner to the parental strain. No consistent differences were observed between strain 267 and Pvd- derivatives strains with respect to their plant growth promotion activity under gnotobiotic conditions.Dr Deryto died in august 1994  相似文献   

9.
10.
A combination of the plant infection-soil dilution technique (most-probable-number [MPN] technique) and immunofluorescence direct count (IFDC) microscopy was used to examine the effects of three winter cover crop treatments on the distribution of a soil population of Rhizobium leguminosarum bv. trifolii across different size classes of soil aggregates (<0.25, 0.25 to 0.5, 0.5 to 1.0, 1.0 to 2.0, and 2.0 to 5.0 mm). The aggregates were prepared from a Willamette silt loam soil immediately after harvest of broccoli (September 1995) and before planting and after harvest of sweet corn (June and September 1996, respectively). The summer crops were grown in soil that had been either fallowed or planted with a cover crop of red clover (legume) or triticale (cereal) from September to April. The Rhizobium soil population was heterogeneously distributed across the different size classes of soil aggregates, and the distribution was influenced by cover crop treatment and sampling time. On both September samplings, the smallest size class of aggregates (<0.25 mm) recovered from the red clover plots carried between 30 and 70% of the total nodulating R. leguminosarum population, as estimated by the MPN procedure, while the same aggregate size class from the June sampling carried only approximately 6% of the population. In June, IDFC microscopy revealed that the 1.0- to 2.0-mm size class of aggregates from the red clover treatment carried a significantly greater population density of the successful nodule-occupying serotype, AR18, than did the aggregate size classes of <0.5 mm, and 2 to 5 mm. In September, however, the population profile of AR18 had shifted such that the density was significantly greater in the 0.25- to 0.5-mm size class than in aggregates of <0.25 mm and >1.0 mm. The populations of two other Rhizobium serotypes (AR6 and AS36) followed the same trends of distribution in the June and September samplings. These data indicate the existence of structural microsites that vary in their suitabilities to support growth and protection of bacteria and that are influenced by the presence and type of plant grown in the soil.  相似文献   

11.
Little is known about the population processes that shape the genetic diversity in natural populations of rhizobia. A sample of 912 Rhizobium leguminosarum biovar trifolii isolates were collected from naturalized red clover populations ( Trifolium pratense ) and analyzed for 15 allozyme loci to determine the levels and distribution of genetic diversity. Hierarchical analyses compared different sampling levels, geographical separation, and temporal separation. Total genetic diversity across all isolates was H = 0.426, with 57.6% of the total diversity found among isolates obtained from individual red clover plants. Relatively low genetic differentiation among populations and high differentiation among plants within populations was observed; this suggests that gene flow and founder effect act differently at geographical and local scales. Significant differences were observed in (i) allele frequencies among populations and among plants within populations, and (ii) the frequency distribution of the most widespread and the most abundant strains. When multilocus linkage disequilibrium was calculated, significant levels of disequilibrium were observed in the total sample and in three of the eight populations.  相似文献   

12.
13.
Abstract All transposon-induced symbiotic mutants of Rhizobium described so far have been obtained using Tn 5 , which codes for kanamycin resistance (KmR). To enable genetic complementation studies, we tried to find an effective transposon carrying another resistance marker. We report here a method for the apparent random transposition in Rhizobium of Tn 1831 , which codes for resistance against spectinomycin (Sp), streptomycin (Sm) and mercury chloride. When the suicide plasmid pMP12 (RP4::Tn 1831 , Km::Mu) was transferred to Rhizobium , in almost all cases the exconjugants harbour a deleted transfer-deficient R plasmid. From this deleted R plasmid transposition occurred to self-transmissible Sym-plasmids of R. leguminosarum and R. trifolii . Using this method a number of Tn 1831 -induced symbiotic mutants of pRL1JI were isolated.  相似文献   

14.
From several native clover species, growing in six different soil types, 170 Rhizobium leguminosarum biovar trifolii strains were isolated, covering the central and southern regions of Portugal. The effectiveness of the strains varied from ineffective to highly effective on T. subterraneum cv. Clare and on T. fragiferum cv. Palestine, with a predominance of medium and high effectiveness on both host plants. The effectiveness was not influenced by provenence (soil or plant), except for the strains from the rankers soils and for the strains isolated from T. pratense, that were ineffective or medium effective on T. subterraneum.Selected strains were evaluated for effectiveness on T. subterraneum cv. Clare, using the commercial strain TA1 as reference. Several of the isolated strains were more effective than TA1, indicating that local strains may be used to produce better inoculants.  相似文献   

15.
Plant growth promoting Pseudomonas fluorescens strain 267, isolated from soil, produced pseudobactin A, 7-sulfonic acid derivatives of pseudobactin A and several B group vitamins. In coinoculation with Rhizobium leguminosarum bv. trifolii strain 24.1, strain 267 promoted clover growth and enhanced symbiotic nitrogen fixation under controlled conditions. To better understand the beneficial effect of P. fluorescens 267 on clover inoculated with rhizobia, the colonization of clover roots by mTn5-gusA marked bacteria was studied in single and mixed infections under controlled conditions. Histochemical assays combined with light and electron microscopy showed that P. fluorescens 267.4 (i) efficiently colonized clover root surface; (ii) was heterogeneously distributed along the roots without the preference to defined root zone; (iii) formed microcolonies on the surface of clover root epidermis; (iv) penetrated the first layer of the primary root cortex parenchyma and (v) colonized endophytically the inner root tissues of clover.  相似文献   

16.
372 natural isolates of Rhizobium leguminosarum bv. viciae, rescued from nodules of pea plants grown in an agricultural field in northern Italy, were analyzed by different methods. Three DNA-based fingerprinting techniques were lined up to compare their relative degree of resolution and possible advantages of each approach. The methods included (i) Eckhardt gel plasmid profiles, (ii) pulsed-field gel electrophoresis (PFGE) of genomic large fragment digests, and (iii) random amplified polymorphic DNA (RAPD) profiles, generated with arbitrary primers. The scheme also involved the isolation of a number of different isolates per nodule to estimate the level of intra-nodular variability. It was therefore possible to evaluate the frequency of double and multiple occupancies, and the proportion of the alternative profiles sharing the same nodule, generally resulting in a numerically dominant, main representative accompanied by a secondary one with a slightly different fingerprint. This finding revealed that the different profiles within a nodule are normally due to bacteria derived from the same single invader following genetic alterations possibly occurred during infection, e.g., by plasmid loss. The analysis of 31 nodules revealed 16 different patterns, representing the most frequently occurring nodulation-proficient isolates of the natural soil examined, five of which were found with frequencies around 15%. The sensitivity of the methods in differentiating isolates was compared. The relatedness of the different natural rhizobial isolates was investigated by densitometrical gel analysis of the fingerprints, allowing a comparison of the results. One of the most interesting conclusions was that the degree of information yielded by the plasmid gel profiling alone, carried out by simple visual inspection without software-aided analyses, was surprisingly high, as it enabled a placement of the isolates, whose accuracy, in terms of relatedness, was subsequently confirmed by each of the two genomic methods.  相似文献   

17.
Genes involved in nodulation competitiveness (tfx) were inserted by marker exchange into the genome of the effective strain Rhizobium leguminosarum bv. trifolii TA1. Isogenic strains of TA1 were constructed which differed only in their ability to produce trifolitoxin, an antirhizobial peptide. Trifolitoxin production by the ineffective strain R. leguminosarum bv. trifolii T24 limited nodulation of clover roots by trifolitoxin-sensitive strains of R. leguminosarum bv. trifolii. The trifolitoxin-producing exconjugant TA1::10-15 was very competitive for nodulation on clover roots when coinoculated with a trifolitoxin-sensitive reference strain. The nonproducing exconjugant TA1::12-10 was not competitive for nodule occupancy when coinoculated with the reference strain. Tetracycline sensitivity and Southern analysis confirmed the loss of vector DNA in the exconjugants. Trifolitoxin production by TA1::10-15 was stable in the absence of selection pressure. Transfer of tfx to TA1 did not affect nodule number or nitrogenase activity. These experiments represent the first stable genetic transfer of genes involved in nodulation competitiveness to a symbiotically effective Rhizobium strain.  相似文献   

18.
19.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号