首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究利用11个微卫星标记对采自青海省东部地区的13个喜马拉雅旱獭(Marmota himalayana)种群149个个体进行了基因分型,并运用种群遗传学方法对其遗传多样性和遗传结构进行分析。结果显示,11个微卫星标记位点共计检测到97个等位基因,各种群的平均观测杂合度和期望杂合度范围分别为0.58~0.82和0.60~0.79,种群遗传多样性水平相对较高;遗传结构分析表明,青海省东部地区的喜马拉雅旱獭种群具有显著的遗传结构,13个地理种群形成了3个遗传聚类群,且3个遗传聚类群与湟水河和黄河上游干流所划分出的地理单元完全一致,因此我们认为湟水河和黄河上游干流是阻碍该地区喜马拉雅旱獭种群进行迁移扩散和基因交流的天然屏障。同时,STRUCTURE分析结果还显示3个遗传聚类群间仍有明显的基因流,AMOVA分析也显示3个聚类群间变异百分比为6.60%,仅略高于聚类群内种群间的变异(4.51%),而远低于种群内变异水平(88.90%),表明三个聚类群间的分化程度并不是很深。这说明喜马拉雅旱獭可能通过桥梁或在枯水期等穿越河流进行基因交流。以上结果为该地区的旱獭种群监控和鼠疫防控提供了科学的理论基础。  相似文献   

2.
Marmots are large ground squirrels, and 14 species have been reported in the world, including four species of marmots (Himalayan marmot, Tarbagan marmot, gray marmot and long-tailed marmot) living in China. Although these biological resources are abundant in China, information regarding their genetic features is lacking, hampering further study regarding them. The aims of this research were to evaluate genetic variations of four species of Chinese wild marmots, and analyzed kinship of these marmot populations. In the current study, we collected samples of four species of Chinese wild marmot and analyzed the effective allele number, gene diversity, the Shannon index, and polymorphism information to evaluate genetic variations using 13 microsatellite loci. Based on Nei’s genetic distance using the unweighted pair group method, we constructed a dendrogram to analyze the population kinship. We determined that all four Chinese marmot species had high genetic polymorphisms and departure from Hardy-Weinberg equilibrium. The Chinese marmots to be divided into two large groups: Himalayan marmot was independent group. Tarbagan marmot, gray marmot and long-tailed marmot were others; Tarbagan marmot and gray marmot showed a close kinship with each other, but long-tailed marmot did not have a close relationship with the other species. The high polymorphisms and the kinship of Chinese marmot populations were correlated with geographical terrain of their habitat. Himalayan marmot was characterized as living in unique alpine meadows in Qinghai-Tibet plateau and was affected by terrain; however, Tarbagan marmot, gray marmot and long-tailed marmot were characterized as living in grassland or alpine grassland and were not affected by terrain. Genetic features of Chinese wild marmots were investigated in this study. This may give using information regarding protection of Chinese wild marmot resource and further application of biomedical research.  相似文献   

3.
Alpine marmots were introduced into the northern Pyrenees between 1948 and 1988 from individuals captured in the French Alps, in order to bolster food sources for the golden eagle and brown bear. The marmot’s subsequent occupation of the southern Pyrenees has been extremely fast. From an initial population of ~400 individuals, the present population in the southern Pyrenees is estimated to be of more than 10,000 individuals. The objective of this study was to assess what were the mechanisms that have enabled such a fast occupation of the territory. We studied habitat preferences and habitat selection of the alpine marmot in the southern Pyrenees both at the micro- and meso-scale, and compared our results with similar data in the bibliography on their native region. We also compared climatic data from both the native and introduction sites. Our results indicate relatively low climate (precipitation and temperature) matching between the two sites but a relatively high habitat matching. Marmots negatively select high woody cover and the presence of conifers in their home range, while they choose alpine and sub-alpine meadows close to rivers with boulders. Furthermore, the marmot population is independent of snow cover duration. We conclude that the successful establishment in the Pyrenees by the alpine marmot is explained both by the habitat- and climate-matching mechanisms. In both aspects, marmots show a generalist response. Meso-scale GIS-derived variables were non significant when analyzed together with local, micro-scale variables from field measurements.  相似文献   

4.
A combination of behavioural observation, DNA fingerprinting, and allozyme analysis were used to examine natal dispersal in a wild rabbit population. Rabbits lived in territorial, warren based social groups. Over a 6-year period, significantly more male than female rabbits moved to a new social group before the start of their first breeding season. This pattern of female philopatry and male dispersal was reflected in the genetic structure of the population. DNA fingerprint band-sharing coefficients were significantly higher for females within the same group than for females between groups, while this was not the case for males. Wrighfs inbreeding coefficients were calculated from fingerprint band-sharing values and compared to those obtained from allozyme data. There was little correlation between the relative magnitudes of the F-statistics calculated using the two techniques for comparisons between different social groups. In contrast, two alternative methods for calculating FST from DNA fingerprints gave reasonably concordant values although those based on band-sharing were consistently lower than those calculated by an ‘allele’ frequency approach. A negative FIS value was obtained from allozyme data. Such excess heterozygosity within social groups is expected even under random mating given the social structure and sex-biased dispersal but it is argued that the possibility of behavioural avoidance of inbreeding should not be discounted in this species. Estimates of genetic differentiation obtained from allozyme and DNA fingerprint data agreed closely with reported estimates for the yellow-bellied marmot, a species with a very similar social structure to the European rabbit.  相似文献   

5.
喜马拉雅旱獭是青藏高原的优势种,数量多、分布广,全面了解其遗传背景对该地区旱獭资源的保护与合理利用具有重要的意义。本研究以青藏高原云南、西藏和青海三省区共13个地理种群计258只旱獭为研究对象,PCR扩增获得线粒体DNA控制区基因部分序列(887 bp),并运用种群遗传学方法进行遗传多样性分析。结果显示:258份样品共发现了84个变异位点(9.40%),定义了68种单倍型,其单倍型多样性(h)平均值为0.968±0.003、核苷酸多样性(π)平均值为0.017 25±0.016 37,种群总体遗传多样性较高。AMOVA方差分析显示13个地理种群间存在着明显的遗传分化(Fst=0.620 67,P<0.001),种群间基因交流多数较低(Nm<1)。基于单倍型构建的系统发育树中13个地理种群的喜马拉雅旱獭聚为两支,其中来自青藏高原西南地区(西藏安多、青海格尔木、青海囊谦、云南迪庆)的18个单倍型聚成一个大的分支(A支),其余50个单倍型聚为一个大的分支(B支),在NETWORK网络图中也可见到相似网络拓扑结构。研究结果显示青藏高原喜马拉雅旱獭种群以唐古拉山脉为界分为两个大的种群,说明地理隔离是影响喜马拉雅旱獭种群动态变化的主要因素。  相似文献   

6.
The Vancouver Island marmot is the most endangered mammal of Canada. Factors which have brought this population to the verge of extinction have not yet been fully elucidated, but the effects of deforestation and habitat fragmentation on survival rates, as well as those of variation in rainfall, temperature, snowpack depth and snowmelt strongly suggest that marmots on the island are struggling to keep pace with environmental changes. Genetic analyses, however, seem to indicate that the Vancouver Island marmot may merely represent a melanistic population of its parental species on the mainland. Were it not for its black pelage colour, it is unlikely that it would have attracted much attention as a conservation priority. Our study uses three-dimensional coordinates of cranial landmarks to further assess phenotypic differentiation of the Vancouver Island marmot. A pattern of strong interspecific divergence and low intraspecific variation was found which is consistent with aspects of drift-driven models of speciation. However, the magnitude of shape differences relative to the putatively neutral substitutions in synonymous sites of cytochrome b is too large for being compatible with a simple neutral model. A combination of bottlenecks and selective pressures due to natural and human-induced changes in the environment may offer a parsimonious explanation for the large phenotypic differentiation observed in the species. Our study exemplifies the usefulness of a multidisciplinary approach to the study of biological diversity for a better understanding of evolutionary models and to discover aspects of diversity that may be undetected by using only a few genetic markers to characterize population divergence and uniqueness.  相似文献   

7.

Mongolians have long known of the association between marmots and the plague. We examine their understanding of the marmot not only as a biological species that can harbour the plague, but also from a cosmological perspective as a chimerical being with potential punishment on hunters who have transgressed ancient taboos. To do so we deconstruct the multiple image of the chimerical marmot in legends, stories, and beliefs. Many Mongolians believe that if the marmot is over-exploited and the population decimated through excessive hunting, hunting households may be punished with infections of the plague.

  相似文献   

8.
Marmota vancouverensis is the only insular species among the 14 species of marmots. The evolutionary history of this species is unresolved. Although M. vancouverensis is strongly differentiated in osteological and other morphological characters, its low genetic divergence suggests recent evolution from an ancestral continental species. We used geometric morphometric techniques to assess the morphology of hemimandibles from 239 modern M. vancouverensis , Marmota caligata , Marmota flaviventris , Marmota olympus and 30 Holocene (9435–735 cal. yr bp) subfossil M. vancouverensis . Our results confirm that the mandible of M. vancouverensis is strongly differentiated in shape from continental marmot species, but similar in size to its mainland sister species M. caligata . Temporal variation in size and shape over the past 2500 years among allochronic samples of M. vancouverensis was minimal suggesting that the morphological divergence of this species occurred in a period of rapid change following its isolation from mainland populations in the late Pleistocene. Selection pressures associated with environmental changes and founder effects and genetic drift resulting from population bottlenecks created by population declines and habitat fragmentation are hypothesized as factors contributing to the morphological divergence of this species.  相似文献   

9.
Closely related species often have remarkably different vocalizations. Some of the variation in acoustic structure may result from species adapting their calls to maximize transmission through their acoustic environments. We document the relative magnitude of inter- and intraspecific variation in acoustic transmission properties of the habitats of three closely related marmot species to study the relative importance that the acoustic environment may have played in selecting for species-specific marmot alarm calls. We used spectrogram correlation to quantify the degree to which pure tones and alarm calls changed as they were broadcast through marmot home ranges to describe the acoustic habitats of golden (M. candata aurea), yellow-bellied (M. flaviventris), and alpine (M. marmota L.) marmots. Species lived in quantifiably different acoustic habitats. One analysis partitioned variation between species and between marmot social groups (nested within species). We found significant interspecific variation in the acoustic transmission fidelity of the three species' habitats and insignificant intraspecific variation between social groups. Further analysis of a larger sample of alarm calls broadcast through golden marmot social groups found significant intraspecific variation. Interspecific variation greater than intraspecific variation suggests that variable acoustic habitats may be responsible for at least some of the interspecific variation in alarm call structure. This is the first study to use spectrogram correlation to describe habitat acoustics. We discuss aspects of the method that may be useful for others seeking to quantify habitat acoustics.  相似文献   

10.
Rare plant species are vulnerable to genetic erosion and inbreeding associated with small population size and isolation due to increasing habitat fragmentation. The degree to which these problems undermine population viability remains debated. We explore genetic and reproductive processes in the critically endangered long-lived tropical tree Medusagyne oppositifolia, an endemic to the Seychelles with a naturally patchy distribution. This species is failing to recruit in three of its four populations. We evaluate whether recruitment failure is linked to genetic problems associated with fragmentation, and if genetic rescue can mitigate such problems. Medusagyne oppositifolia comprises 90 extant trees in four populations, with only the largest (78 trees) having successful recruitment. Using 10 microsatellite loci, we demonstrated that genetic diversity is high (H(E) : 0.48-0.63; H(O) : 0.56-0.78) in three populations, with only the smallest population having relatively low diversity (H(E) : 0.26 and H(O) : 0.30). All populations have unique alleles, high genetic differentiation, and significant within population structure. Pollen and seed dispersal distances were mostly less than 100 m. Individuals in small populations were more related than individuals in the large population, thus inbreeding might explain recruitment failure in small populations. Indeed, inter-population pollination crosses from the large donor population to a small recipient population resulted in higher reproductive success relative to within-population crosses. Our study highlights the importance of maintaining gene flow between populations even in species that have naturally patchy distributions. We demonstrate the potential for genetic and ecological rescue to support conservation of plant species with limited gene flow.  相似文献   

11.
Recent snow droughts associated with unusually warm winters are predicted to increase in frequency and affect species dependent upon snowpack for winter survival. Changes in populations of some cold‐adapted species have been attributed to heat stress or indirect effects on habitat from unusually warm summers, but little is known about the importance of winter weather to population dynamics and how responses to snow drought vary among sympatric species. We evaluated changes in abundance of hoary marmots (Marmota caligata) over a period that included a year of record‐low snowpack to identify mechanisms associated with weather and snowpack. To consider interspecies comparisons, our analysis used the same a priori model set as a concurrent study that evaluated responses of American pikas (Ochotona princeps) to weather and snowpack in the same study area of North Cascades National Park, Washington, USA. We hypothesized that marmot abundance reflected mechanisms related to heat stress, cold stress, cold exposure without an insulating snowpack, snowpack duration, atmospheric moisture, growing‐season precipitation, or select combinations of these mechanisms. Changes in marmot abundances included a 74% decline from 2007 to 2016 and were best explained by an interaction of chronic dryness with exposure to acute cold without snowpack in winter. Physiological stress during hibernation from exposure to cold, dry air appeared to be the most likely mechanism of change in marmot abundance. Alternative mechanisms associated with changes to winter weather, including early emergence from hibernation or altered vegetation dynamics, had less support. A post hoc assessment of vegetative phenology and productivity did not support vegetation dynamics as a primary driver of marmot abundance across years. Although marmot and pika abundances were explained by strikingly similar models over periods of many years, details of the mechanisms involved likely differ between species because pika abundances increased in areas where marmots declined. Such differences may lead to diverging geographic distributions of these species as global change continues.  相似文献   

12.
Populations from different parts of a species range may vary in their genetic structure, variation and dynamics. Geographically isolated populations or those located at the periphery of the range may differ from those located in the core of the range. Such peripheral populations may harbour genetic variation important for the adaptive potential of the species. We studied the distribution‐wide population genetic structure of the Terek Sandpiper Xenus cinereus using 13 microsatellite loci and the mitochondrial DNA (mtDNA) control region. In addition, we estimated whether genetic variation changes from the core towards the edge of the breeding range. We used the results to evaluate the management needs of the sampled populations. Distribution‐wide genetic structure was negligible; the only population that showed significant genetic differentiation was the geographically isolated Dnieper River basin population in Eastern Europe. The genetic variation of microsatellites decreased towards the edge of the distribution, supporting the abundant‐centre hypotheses in which the core area of the distribution preserves the most genetic variation; however, no such trend could be seen with mtDNA. Overall genetic variation was low and there were signs of past population contractions followed by expansion; this pattern is found in most northern waders. The current effective population size (Ne) is large, and therefore global conservation measures are not necessary. However, the marginal Dnieper River population needs to be considered its own management unit. In addition, the Finnish population warrants conservation actions due to its extremely small size and degree of isolation from the main range, which makes it vulnerable to genetic depletion.  相似文献   

13.
Xu J H  Wang L L  Xue H L  Wang Y S  Xu L X 《农业工程》2009,29(5):314-319
In order to verify the effect of social behavior and geographical isolation on the genetic structure of the Himalayan marmot (Marmota himalayana) population, we examined the genetic diversity of Himalayan marmots alongside the Qinghai–Tibet Railway using microsatellite markers. Eight microsatellite loci were used to examine 120 animals of 4 populations: Ulan (U), Delhi (D), Tuotuohe (T) and Ando (A). The results show that: (1) Himalayan marmots alongside the Qinghai–Tibet Railway are highly genetically diversified. The allele number (Na), effective allele number (Ne), observed heterozygosity (Ho), Nei’s expected heterozygosity (He) and polymorphism information content (PIC) of the total Himalayan marmot population were 4.75, 3.0332, 0.6990, 0.6672, 0.6102, respectively. (2) Himalayan marmots may be able to avoid inbreeding by a mechanism that will prevent the genetic diversity reduction caused by their social lifestyle. Heterozygote excess was observed at most loci. The inbreeding coefficients within the subpopulation (FIS), in the total population (FIT), the differentiation index of population (FST), and the gene flow (Nm) were ?0.2265, ?0.0477, 0.1458, and 1.4646, respectively. (3) The genetic differentiation of the Himalayan marmot population was in accordance with Wright’s “isolation by distance” theory. The Mantel test indicates that the correlation between genetic distance and geographic distance was significant (P < 0.05, r = 0.698). (4) Each of the four geographical populations had moderate differentiation. Both geographic distance and isolation could affect the population genetic structure of the Himalayan marmot. The maximum gene flow (3.5915), the smallest genetic differentiation index (0.0651), the lowest genetic distance (0.0700) and the highest genetic identity (0.9526) were all between the Ulan population and Delhi populations. (5) The cluster analysis, based on Nei’s standard genetic distance, showed that the populations of Delhi and Ulan were first merged in a cluster, and then Tuotuohe population was merged in the clustering. The Ando population was the last element in the clustering.  相似文献   

14.
We studied the effects of food resources on weaning success, overwinter survival, and social group density in golden marmots ( Marmota caudata aurea ), an Old World sciurid rodent. End-of-season standing crop, a measure of seasonal productivity, varied between marmot groups but seemed repeatable between years. We adjusted some of our measurements of potential food availability by marmot preferences because faecal analysis suggested that marmots foraged selectively. Some, but not all, measured fitness parameters were associated with variation in food availability. The probability of weaning young was associated with overall food availability the previous year, and there was a significant positive relationship between the early-season food resources and the proportion of years in which a group reproduced. Weaning date, a correlate of subsequent juvenile overwinter survival, was associated with overall food availability in the same year. Non-juvenile overwinter survival was weakly associated with food availability. Finally, marmot density was not associated with the availability of food resources. We suggest that obligate social behaviour may limit the degree to which demographic factors can track environmental variation.  相似文献   

15.
Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host.  相似文献   

16.
Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.  相似文献   

17.
Priority effects occur when a species or genotype with earlier arrival has an advantage such that its relative abundance in the community or population is increased compared with later-arriving species. Few studies have dealt with this concept in the context of within-species competition. Skeletonema marinoi is a marine diatom that shows a high degree of genetic differentiation between populations over small geographical distances. To test whether historical events such as priority effects may have been important in inducing these patterns of population differentiation, we performed microcosm experiments with successive inoculation of different S. marinoi strains. Our results show that even in the absence of a numerical advantage, significant priority effects were evident. We propose that priority effects may be an important mechanism in initiating population genetic differentiation.  相似文献   

18.
Individuals are generally predicted to avoid inbreeding because of detrimental fitness effects. However, several recent studies have shown that limited inbreeding is tolerated by some vertebrate species. Here, we examine the costs and benefits of inbreeding in a largely polygynous rodent, the yellow-bellied marmot (Marmota flaviventris). We use a pedigree constructed from 8 years of genetic data to determine the relatedness of all marmots in our study population and examine offspring survival, annual male reproductive success, relatedness between breeding pairs and the effects of group composition on likelihood of male reproduction to assess inbreeding in this species. We found decreased survival in inbred offspring, but equal net reproductive success among males that inbred and those that avoided it. Relatedness between breeding pairs was greater than that expected by chance, indicating that marmots do not appear to avoid breeding with relatives. Further, male marmots do not avoid inbreeding: males mate with equal frequency in groups composed of both related and unrelated females and in groups composed of only female relatives. Our results demonstrate that inbreeding can be tolerated in a polygynous species if the reproductive costs of inbreeding are low and individuals that mate indiscriminately do not suffer decreased reproductive success.  相似文献   

19.
Mate-choice theory predicts different optimal mating systems depending on resource availability and habitat stability. Regions with limited resources are thought to promote monogamy. We tested predictions of monogamy in a social rodent, the hoary marmot (Marmota caligata), at the northern climatic extreme of its distribution. Mating systems, social structure and genetic relationships were investigated within and among neighbouring colonies of marmots within a 4 km(2) valley near Kluane National Park, Yukon, Canada, using 21 microsatellite loci. While both monogamous and polygynous populations of hoary marmots have been observed in the southern reaches of this species' range; northern populations of this species are thought to be predominantly monogamous. Contrary to previous studies, we did not find northern hoary marmot social groups to be predominantly monogamous; rather, the mating system seemed to be facultative, varying between monogamy and polygyny within, as well as among, social groups. These findings reveal that the mating systems within colonies of this species are more flexible than previously thought, potentially reflecting local variation in resource availability.  相似文献   

20.
Marmot species exhibit a great diversity of social structure, mating systems and reproductive skew. In particular, among the social species (i.e. all except Marmota monax), the yellow-bellied marmot appears quite different from the others. The yellow-bellied marmot is primarily polygynous with an intermediate level of sociality and low reproductive skew among females. In contrast, all other social marmot species are mainly monogamous, highly social and with marked reproductive skew among females. To understand the evolution of this difference in reproductive skew, I examined four possible explanations identified from reproductive skew theory. From the literature, I then reviewed evidence to investigate if marmot species differ in: (1) the ability of dominants to control the reproduction of subordinates; (2) the degree of relatedness between group members; (3) the benefit for subordinates of remaining in the social group; and (4) the benefit for dominants of retaining subordinates. I found that the optimal skew hypothesis may apply for both sets of species. I suggest that yellow-bellied marmot females may benefit from retaining subordinate females and in return have to concede them reproduction. On the contrary, monogamous marmot species may gain by suppressing the reproduction of subordinate females to maximise the efficiency of social thermoregulation, even at the risk of departure of subordinate females from the family group. Finally, I discuss scenarios for the simultaneous evolution of sociality, monogamy and reproductive skew in marmots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号