首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
GRP is a pancreatic neuropeptide and may be of importance for the neural control of insulin and glucagon secretion. In this study, we investigated the effects of GRP on basal and stimulated insulin and glucagon secretion in the mouse. Intravenous injections of GRP at dose levels exceeding 2.12 nmol/kg were found to rapidly increase basal plasma levels of both insulin and glucagon. Furthermore, at a low dose level without effect on basal plasma insulin levels, GRP was found to potentiate the insulin response to both glucose (by 40%; p less than 0.05) and to the cholinergic agonist carbachol (by 57%; p less than 0.01). Also, GRP was at this dose level found to potentiate the glucagon response to carbachol (p less than 0.01). Glucose abolished GRP-induced glucagon secretion. Moreover, methylatropine given at a dose level that totally abolishes carbachol-induced insulin secretion inhibited GRP-induced insulin secretion by 39% (p less than 0.05) and GRP-induced glucagon secretion by 25% (p less than 0.01). L-Propranolol at a dose level that totally abolishes beta-adrenergically-induced insulin secretion inhibited GRP-induced insulin secretion by 52% (p less than 0.01) and GRP-induced glucagon secretion by 15% (p less than 0.05). In summary, we have shown that GRP stimulates basal and potentiates stimulated insulin and glucagon secretion in mice, and that the stimulatory effects of GRP on insulin and glucagon secretion are partially inhibited by muscarinic blockade by methylatropine or by beta-adrenoceptor blockade by propranolol. We conclude that GRP activates potently both insulin and glucagon secretion in the mouse by mechanisms that are partially related to the muscarinic and the beta-adrenergic receptors.  相似文献   

2.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

3.
Glucagon secretion is known to be stimulated by activation of the alpha-adrenoceptors. In this study, we investigated whether alpha-adrenoceptor blockade by phentolamine affects basal and stimulated glucagon secretion in the mouse. Phentolamine was injected intraperitoneally to mice at dose levels varying from 2.6 to 260 mumol/kg. It was found that, while decreasing plasma glucose levels, phentolamine did not over this wide dose range affect basal glucagon concentrations indicating an inhibition of the hypoglycaemia-induced glucagon secretion. Further, phentolamine clearly inhibited the glucagon secretory response to beta-adrenergic or cholinergic stimulation. Thus, phentolamine (2.6 mumol/kg), impaired the glucagon secretory response to the beta 2-adrenoceptor agonist terbutaline by 51% (P less than 0.01), and to the cholinergic agonist carbachol by 44% (P less than 0.02). We conclude that alpha-adrenoceptor blockade by phentolamine inhibits the glucagon secretion following hypoglycaemia or stimulation by beta-adrenergic and cholinergic agonists. Thus, the alpha-adrenoceptors seem to be of great importance for glucagon secretion in the mouse.  相似文献   

4.
Summary Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that occurs in several tissues, e.g., in the gut. We have studied PACAP-like immunoreactivity in the pancreas of rat and mouse, and the effects of PACAP-38 on basal and stimulated insulin and glucagon secretion in the mouse. Immunofluorescence staining demonstrated the presence of PACAP-like immunoreactivity in nerve fibers in both the rat and mouse pancreas. The nerve fibers were seen in the exocrine pancreas and surrounding the islets. Occasionally, the nerve fibers occurred within the islets. Most PACAP-positive nerve fibers innervated the intrapancreatic ganglia, although no nerve cell bodies contained PACAP-like immunoreactivity. In-vivo experiments in mice revealed that basal plasma glucagon levels were increased by PACAP-39 injected intravenously at dose levels exceeding 1.8 nmol/kg. Furthermore, PACAP-38 (7 nmol/kg) potentiated the plasma glucagon response to the cholinergic agonist carbachol (0.16 mol/kg). This potentiation was reduced to simple addition by pretreatment with a combined - and -adrenergic blockade by phentolamine (35 mol/kg) and propranolol (8.5 mol/kg). Moreover, PACAP-38 inhibited a carbachol-induced increase in the level of plasma insulin in the absence but not in the presence of adrenergic blockade. PACAP-38 increased basal plasma insulin levels and increased basal plasma glucose levels 6 min and 10 min, respectively, after injection of the peptide. We conclude that PACAP-like immunoreactivity exists in nerve fibers innervating the mouse and rat pancreas, particularly the intrapancreatic ganglia, and that PACAP-38 augments both basal and carbachol-stimulated glucagon secretion in the mouse.  相似文献   

5.
Glucagon secretion from the endocrine pancreas is known to be enhanced by cholinergic stimulation. It has previously been described that vasoactive intestinal polypeptide (VIP) is a potent potentiator of this cholinergically induced glucagon secretion. In the present study, the effects of several gastro-entero-pancreatic polypeptides and glucose on glucagon secretion induced by the cholinergic agonist carbachol were investigated in vivo in the mouse. Carbachol was injected i.v. and it stimulated glucagon secretion. The polypeptides neurotensin and gastric inhibitory polypeptide (GIP) were both found to potentiate the carbachol-induced glucagon secretion, whereas substance P, pancreatic polypeptide, and two different molecular variants of cholecystokinin, CCK-8 and CCK-39, were without effect on cholinergically induced glucagon secretion. Neither of these polypeptides had any influence on basal glucagon secretion when tested over a wide dose range. Somatostatin and glucose both markedly inhibited carbachol-induced glucagon secretion. In conclusion: carbachol is a potent stimulator of glucagon secretion. This cholinergically induced glucagon secretion can be modified by several gastro-entero-pancreatic hormones influencing the release process both in potentiating and inhibiting direction. The physiological relevance of these interactions remains to be further investigated.  相似文献   

6.
Summary The intrapancreatic localization and the effects on basal and stimulated insulin secretion of neuropeptide Y (NPY) were investigated in the mouse. Immunocyto-chemistry showed NPY to be confined to intrapancreatic nerve fibers mainly associated with blood vessels. Fine varicose NPY fibers were also detected in the exocrine parenchyma and occasionally also within the islets. Double-staining experiments with the use of antisera for both NPY and tyrosine hydroxylase (TH) indicated that most of the NPY fibers were nonadrenergic in nature. Only a population of the NPY fibers occurring around blood vessels showed TH immunoreactivity. Under in vivo conditions, NPY was found to elevate plasma insulin levels slightly when injected intravenously at the high dose level of 8.5 nmol/kg. At lower dose levels, NPY did not affect basal plasma insulin levels, but instead inhibited glucose-induced insulin secretion. Thus, the glucose-induced increment in plasma insulin levels, which was 120±7U/ml in controls, was reduced to 87 ±5 U/ml by NPY at 4.25 nmol/kg (p<0.01) and to 98±6U/ml by NPY at 1.06 nmol/kg (p<0.05). In contrast, the insulin secretory response to the cholinergic agonist carbachol was not affected by NPY. We conclude that NPY nerve fibers occur in the mouse pancreas and that most of these NPY nerve fibers are nonadrenergic. Furthermore, in the mouse, NPY enhances basal plasma insulin levels at high dose levels and inhibits glucose-induced, but not cholinergically induced insulin secretion at lower dose levels under in vivo conditions.  相似文献   

7.
By immunohistochemistry it was found that VIP- and peptide HI/peptide HM (PHI/PHM)-like immunoreactivity occurred in autonomic neurons in the human pancreas. Antisera against both VIP and PHI/PHM reacted with neuronal cells in local ganglia and these ganglia also contained PHI/PHM- and VIP-immunoreactive fibre plexuses. VIP- and PHI/PHM-positive fibres were also seen close to the Langerhans' islets. In addition, PHI/PHM- but not VIP-like immunoreactivity was observed in the endocrine cells often located in the periphery of the islets. The nature of these PHI/PHM-positive cells remains to be established. I.v. infusion of VIP at constant rates of 300 and 900 pmol/kg X h for 30 min in 6 healthy volunteers resulted in plateau values of 102 +/- 26 and 291 +/- 25 pM, respectively. These levels of VIP which are above those found in the circulation under physiological conditions stimulated secretion of insulin, C-peptide and pancreatic glucagon dose-dependently. On the contrary prolonged (60 min) infusion of PHM in doses resulting in plasma levels up to 1340 +/- 405 pM had no effect on pancreatic hormone secretion. These findings suggest that VIP is a likely neurotransmitter in the control of endocrine pancreatic secretion while PHM has a less prominent role, if any.  相似文献   

8.
We have studied the influence of a wide concentration range of islet amyloid polypeptide (IAPP) on both glucagon and insulin release stimulated by various types of secretagogues. In an islet incubation medium devoid of glucose, the rate of glucagon release being high, we observed a marked suppressive action by low concentrations of IAPP, 10(-10) and 10(-8) M, on glucagon release. Similarly, glucagon release stimulated by L-arginine, the cholinergic agonist carbachol, or the phosphodiesterase inhibitor isobutylmethyl xanthine (IBMX), an activator of the cyclic AMP system, was inhibited by IAPP in the 10(-10) and 10(-8) M concentration range. Moreover, basal glucagon release at 7 and 10 mM glucose was suppressed by IAPP. In contrast, IAPP exerted a dual action on insulin release. Hence, low concentrations of IAPP brought about a modest increase of basal insulin secretion at 7 mM glucose and also of insulin release stimulated by carbachol. High concentrations of IAPP, however, inhibited insulin release stimulated by glucose (10 and 16.7 mM), IBMX, carbachol and L-arginine. In conclusion, our data suggest that IAPP has complex effects on islet hormone secretion serving as an inhibitor of glucagon release and having a dual action on insulin secretion exerting mainly a negative feedback on stimulated and a positive feedback on basal insulin release.  相似文献   

9.
Helodermin, VIP and PHI, which share a high degree of homology with secretin, have been identified in the gut but their physiological role is unknown. In this study 3 series of tests were carried out to determine the actions of helodermin, VIP and PHI on pancreatic secretion in 6 conscious dogs and amylase release from the dispersed canine pancreatic acini and to correlate the alterations in pancreatic secretory and circulatory effects in 24 anesthetized dogs. Helodermin, VIP and PHI infused i.v. in graded doses (12.5-200 pmol/kg.h) resulted in a dose-dependent increase in pancreatic HCO3 secretion reaching, respectively, 100%, 7% and 2% of secretin maximum. When combined with constant dose infusion of CCK-8 (100 pmol/kg.h), helodermin but not VIP or PHI augmented dose-dependently the HCO3 secretion. When added in various concentrations (10(-10)-10(-5)M) to the incubation medium of dispersed pancreatic acini only helodermin but not VIP or PHI increased dose-dependently amylase release reaching about 50% of CCK-8 maximum. In anesthetized dogs, the pancreatic blood flow (PBF) measured by electromagnetic blood flowmetry showed an immediate and dose-dependent increase following the injections of various doses of helodermin, VIP, PHI and secretin, the peak blood flow preceding by about 1 min the peak secretory stimulation. This study shows that helodermin resembles secretin in its potent pancreatic HCO3 stimulation but differs from VIP or PHI which are poor secretagogues but potent vasodilators. We conclude that if tested peptides are released in the gut, helodermin, like secretin, may be involved in the hormonal stimulation of exocrine pancreas, whereas VIP and PHI may serve mainly as vasodilators in the pancreatic circulation.  相似文献   

10.
Xenin is a 25-amino acid peptide of the neurotensin/xenopsin family identified in gastric mucosa as well as in a number of tissues, including the pancreas of various mammals. In healthy subjects, plasma xenin immunoreactivity increases after meals. Infusion of the synthetic peptide in dogs evokes a rise in plasma insulin and glucagon levels and stimulates exocrine pancreatic secretion. The latter effect has also been demonstrated for xenin-8, the C-terminal octapeptide of xenin. We have investigated the effect of xenin-8 on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Xenin-8 stimulated basal insulin secretion and potentiated the insulin response to glucose in a dose-dependent manner (EC(50)=0.16 nM; R(2)=0.9955). Arginine-induced insulin release was also augmented by xenin-8 (by 40%; p<0.05). Xenin-8 potentiated the glucagon responses to both arginine (by 60%; p<0.05) and carbachol (by 50%; p<0.05) and counteracted the inhibition of glucagon release induced by increasing the glucose concentration. No effect of xenin-8 on somatostatin output was observed. Our observations indicate that the reported increases in plasma insulin and glucagon levels induced by xenin represent a direct influence of this peptide on the pancreatic B and A cells.  相似文献   

11.
A newly isolated porcine intestinal polypeptide (PHI) at a concentration of 3 ng/ml induced insulin release from isolated perfused rat pancreas at basal (4.4 mmol/1) as well as at increased (16.7 mmol/1) glucose levels. Furthermore, the peptide enhanced arginine-stimulated glucagon secretion, but did not effect arginine-stimulated insulin release.  相似文献   

12.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

13.
Immunoreactive calcitonin gene-related peptide (CGRP) has been shown to occur in intrapancreatic nerves and islet somatostatin cells in the rat. Therefore, we investigated the effects of CGRP on insulin and glucagon secretion in the rat. CGRP was infused i.v. at one of 3 dose levels (4.3, 17 or 68 pmol/min). Infusion of CGRP alone was found to elevate basal plasma levels of both insulin and glucagon. In contrast, CGRP impaired the plasma insulin responses to both glucose (7 mg/min; P less than 0.001) and arginine (8.5 mg/min; P less than 0.001), and inhibited the arginine-induced increase in plasma glucagon concentrations (P less than 0.001). Since CGRP and somatostatin are colocalized within the D-cells, we also infused CGRP and somatostatin together at equimolar dose levels (17 pmol/min), with glucose (7 mg/min). By that, the increase in plasma insulin concentrations decreased more rapidly than during infusion of either peptide alone. Since alpha 2-adrenoceptor activation is known to inhibit glucose-stimulated insulin secretion, we also infused CGRP together with the specific alpha 2-adrenoceptor antagonist yohimbine (37 nmol/min). In that way, the plasma insulin-lowering effect of CGRP was prevented. We have shown in the rat: (1) that CGRP stimulates basal insulin and glucagon secretion; (2) that CGRP inhibits stimulated insulin and glucagon secretion; (3) that CGRP and somatostatin more rapidly induce a potent inhibitory action on glucose-stimulated insulin secretion when given together; and (4) that the alpha 2-adrenoceptor antagonist, yohimbine, counteracts the inhibitory action of CGRP on glucose-stimulated insulin secretion. We suggest that CGRP is of importance for the regulation of insulin and glucagon secretion in the rat. The mechanisms behind the islet effects of CGRP can not be established by the present results, though they apparently require intact alpha 2-adrenoceptors.  相似文献   

14.
The surface epithelial cells of the stomach and duodenum secrete bicarbonate at rest and in response to a number of agonists including the gastrointestinal hormones, glucagon, and GIP. Since those hormones with structural homology may have similar effects, the purpose of the present study was to examine the effect of graded doses (6, 24, and 96 nmol/kg) of pure porcine secretin, VIP, and PHI on bicarbonate secretion by the proximal duodenum containing Brunner's glands. Experiments were performed in vivo on unanesthetized Sprague-Dawley rats with chronic Thiry-Vella type loops of the proximal 2 cm of duodenum. The order of testing was random and only one hormone was tested on a single day. Compared to the saline control, each dose of VIP produced a significant increase in duodenal bicarbonate secretion in a dose-response manner. The two higher doses of secretin and only the 96 nmol/kg dose of PHI significantly increased bicarbonate output. The responses to 96 nmol/kg dose of secretin and VIP were similar, and each was significantly greater than observed with PHI. It is concluded that secretin and VIP stimulate proximal duodenal bicarbonate secretion and are more potent than PHI.  相似文献   

15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic ganglia governing the parasympathetic nerves, which contribute to prandial insulin secretion. We hypothesized that this contribution involves PACAP and show here that the PACAP receptor antagonist PACAP-(6---27) (1.5 nmol/kg iv) reduces the 15-min insulin response to gastric glucose (150 mg/mouse) by 18% in anesthetized mice (P = 0.041). The reduced insulinemia was not due to inhibited release of the incretin factor glucagon-like peptide 1 (GLP-1) because PACAP-(6---27) enhanced the GLP-1 response to gastric glucose. Furthermore, the GLP-1 antagonist exendin-3-(9---39) (30 nmol/kg) exerted additive inhibitory effect on the insulin response when combined with PACAP-(6---27). The PACAP antagonism was specific because intravenous PACAP-(6---27) inhibited the insulin response to intravenous PACAP-27 plus glucose without affecting the insulin response to intravenous glucose alone (1 g/kg) or glucose together with other insulin secretagogues of potential incretin relevance of intestinal (GLP-1, gastric inhibitory polypeptide, cholecystokinin) and neural (vasoactive intestinal peptide, gastrin-releasing peptide, cholinergic agonism) origin. We conclude that PACAP contributes to the insulin response to gastric glucose in mice and suggest that PACAP is involved in the regulation of prandial insulin secretion.  相似文献   

16.
Vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), and helodermin stimulate electrogenic anion secretion in preparations of rat jejunum stripped of muscularis propria. Concentration-response curves to exogenously applied peptides yielded EC50 values of 12 nM, 12 nM and 100 nM for VIP, PHI and helodermin respectively. These secretory responses were most probably mediated via the same receptor population given that cross-desensitisation was observed between all 3 analogues. Four putative VIP antagonists, namely, two growth hormone releasing factors (GRF); [AcTyr1, D-Phe2]GRF-(1-29)-NH2 and [AcTyr1]hGRF-(1-40)-OH as well as [4Cl-D-Phe6,Leu17]VIP and VIP-(10-28) were tested for their ability to inhibit VIP induced electrogenic ion secretion. None of the above exhibited any intrinsic agonist activity nor were they competitive antagonists, although some inhibition was observed with [AcTyr1]hGRF-(1-40)-OH and VIP-(10-28). Their use as selective VIP antagonists is therefore limited in rat jejunal mucosa.  相似文献   

17.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

18.
The glucagon-like immunoreactivity of the gastrointestinal tract is heterogeneous, probably including several different peptides. One of these peptides, glicentine, has recently been extracted and highly purified. Furthermore, by immunocytochemistry a glicentine-like peptide has been reported to occur in the glucagon cell of the pancreatic islets. In the present study we investigated the effects of pure glicentine on insulin release in vivo in mice. The effects were compared with effects of two other peptides, glucagon and GIP. It was found that glicentine had no influence on basal insulin secretion. This was in contrast to equimolar doses of glucagon and GIP, which both stimulated the secretion of insulin. Glucose-induced insulin release was partially inhibited by glicentine. D-glucose, in a dose selected to give a response of 25% of its maximal, raised the plasma insulin concentrations by 44.0 +/- 5.9 microU/ml. The corresponding rise for glicentine plus D-glucose was 22.3 +/- 3.7 microU/ml, i.e. glicentine inhibited glucose-induced insulin released by about 50% (p < 0.01). GIP, on the other hand, enhanced glucose-induced insulin release. This enhancement was diminished by glicentine, a reflection of the inhibition by glicentine of the glucose-induced insulin release. Neither glicentine nor GIP in the doses tested had any effect on insulin secretion induced by cholinergic stimulation. In conclusion, glicentine seems to have no effect on basal insulin release in the mouse, but it partially inhibits glucose-induced insulin secretion. Thus, if the recently demonstrated glicentine-like peptide in the glucagon cell is authentic glicentine, the glucagon cell of the pancreatic islets may contain peptides with stimulatory (glucagon) as well as inhibitory (glicentine) effects on insulin secretion induced by glucose.  相似文献   

19.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

20.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号