首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine liver tRNA was adsorbed on silicone-coated porous glass in 5 M NaCl, 10 mM Tris-HCl (pH 7.6) and fractionated by elution with decreasing NaCl concentrations. tRNAPro, tRNAVal, tRNAIle, tRNAThr, tRNASer, and tRNAPhe were eluted in this order. tRNA which had been digested with ribonuclease A was not adsorbed. Q beta RNA (adsorbed onto the glass in 5 M NaCl) was eluted with 1.5 M NaCl. RNA species in a crude rRNA fraction from Escherichia coli were separated into tRNA, 5S rRNA, and high molecular weight rRNA on siliconized porous glass. A half of calf thymus DNA was adsorbed on the glass in 5 M NaCl and the residual part passed through the column. The CD spectra showed that DNA and tRNA took the C-form and the A-form in 5 M NaCl, respectively. Therefore, the discrepancies of behavior of the DNA and RNA on siliconized porous glass may be related to the occurrence of these forms. The recovery of these nucleic acids from the column was 83-100%. Adsorption chromatography on siliconized porous glass may be a useful method for the separation of tRNA, rRNA, and mRNA.  相似文献   

2.
A synthetic tRNA precursor analog containing the structural elements of Escherichia coli tRNA(Phe) was characterized as a substrate for E. coli ribonuclease P and for M1 RNA, the catalytic RNA subunit. Processing of the synthetic precursor exhibited a Mg2+ dependence quite similar to that of natural tRNA precursors such as E. coli tRNA(Tyr) precursor. It was found that Sr2+, Ca2+, and Ba2+ ions promoted processing of the dimeric precursor at Mg2+ concentrations otherwise insufficient to support processing; very similar behavior was noted for E. coli tRNA(Tyr). As noted previously for natural tRNA precursors, the absence of the 3'-terminal CA sequence in the synthetic precursor diminished the facility of processing of this substrate by RNase P and M1 RNA. A study of the Mg2+ dependence of processing of the synthetic tRNA dimeric substrate radiolabeled between C75 and A76 provided unequivocal evidence for an alteration in the actual site of processing by E. coli RNase P as a function of Mg2+ concentration. This property was subsequently demonstrated to obtain (Carter, B. J., Vold, B.S., and Hecht, S. M. (1990) J. Biol. Chem. 265, 7100-7103) for a mutant Bacillus subtilis tRNAHis precursor containing a potential A-C base pair at the end of the acceptor stem.  相似文献   

3.
Seryl tRNA synthetase from Saccharomyces Carlsbergensis C836 contains two sets of sites for tRNASer, L-serine, and Mg2+-ATP, both of which are involved in aminoacylation. This is based on the following experimental results: (a) at low serine concentrations, second order kinetics in tRNASer are observed; (b) biphasic kinetics result when the amino acid is the varied substrate indicating anticooperative binding of two serine molecules to the synthetase; (c) when two molecules of serine are bound the rate of aminoacylation increases strongly and becomes first order in tRNASer; (d) the involvement of more than one site for Mg2+ and ATP is deduced from systematic variations of the concentrations of Mg2+ and ATP. Implications of the anticooperative binding of the substrates for possible reaction mechanisms are discussed. The results indicate that under normal conditions, the activity of seryl tRNA synthetase is regulated mainly by tRNASer while at high serine concentrations regulation by the amino acid itself prevails.  相似文献   

4.
Identification of a ribonuclease P-like activity from human KB cells.   总被引:11,自引:0,他引:11  
R A Koski  A L Bothwell  S Altman 《Cell》1976,9(1):101-116
An endoribonuclease which cleaves tRNA precursor molecules has been partially purified from human KB tissue culture cells. This activity is found in cytoplasmic fractions but is not detectable in the nucleoplasm. tRNA precursor molecules from both E. coli and KB cells are cleaved by this novel activity to produce 5' phosphate-terminated oligonucleotides. E coli RNAase P and the KB cell nuclease both make a single endonucleolytic scission in E. coli tRNATyr precursor, thereby separating the 41 extra nucleotides on the 5' end of the precursor molecule from the 5' terminal sequence of the mature tRNATyr molecule. The cleavage products generated from other E. coli tRNA precursors by the KB cell activity are identical in size to those produced by RNAase P. The KB cell endoribonuclease requires Mg2+ and a monovalent cation (Na+, K+, or NH4+) for function. The enzymatic activity has a broad pH optimum, centered near pH 8.0, and the activity is inhibited by tRNA. Several KB cell RNAs with long half-lives in vivo, including 5S and bulk 4S RNA, are not cleaved by this nuclease. The KB cell endoribonuclease resembles E. coli RNAase P in its substrate specificity, pH optimum, ion requirements, and sensitivity to tRNA. These properties and the cytoplasmic localization of the novel endoribonuclease indicate its involvement in the biosynthesis of KB cell tRNA.  相似文献   

5.
6.
Antibodies specific for 1-methylguanosine (m1G) were produced by immunization of rabbits with a bovine serum albumin conjugate of m1G. Antibodies specificity was determined by measuring the inhibition of binding of 3H-m1G trialcohol by various nucleosides or related derivatives. The relative affinities of the unpurified antibodies for various nucleosides showed that m1G trialcohol had an 8-fold higher affinity than m1G; further, guanosine and 2'-O-methylguanosine had at least a 500-fold lower affinity than m1G. The antibodies were purified on m1G-AH-Sepharose column and subsequently immobilized to Sepharose. Immobilized m1G antibodies quantitatively and exclusively retained m1G-containing oligonucleotides derived from ribonuclease A digests of 32P-labeled phage T4 tRNAPro. On the other hand, intact 32P-labeled T4 tRNAPro or its precursor RNA(s) did not bind to the same column. These findings indicate that at least a portion of m1G adjacent to the 3' end of the anticodon in intact T4 tRNAPro is not accessible for antibody binding.  相似文献   

7.
The ribonuclease activity of nucleolar protein B23.   总被引:5,自引:1,他引:4       下载免费PDF全文
Protein B23 is an abundant nucleolar protein and putative ribosome assembly factor. The protein was analyzed for ribonuclease activity using RNA-embedded gels and perchloric acid precipitation assays. Three purified bacterially expressed forms of the protein, B23.1, B23.2 and an N-terminal polyhistidine tagged B23.1 as well as the natural protein were found to have ribonuclease activity. However, the specific activity of recombinant B23.1 was approximately 5-fold greater than that of recombinant B23.2. The activity was insensitive to human placental ribonuclease inhibitor, but was inhibited by calf thymus DNA in a dose dependent manner. The enzyme exhibited activity over a broad range of pH with an apparent optimum at pH 7.5. The activity was stimulated by but not dependent on the presence of low concentrations of Ca2+, Mg2+ or NaCl. The Ca2+ effect was saturable and only stimulatory in nature. In contrast, Mg2+ and NaCl exhibited optimal concentrations for stimulation and both inhibited the ribonuclease at concentrations above these optima. These data suggest that protein B23 has intrinsic ribonuclease activity. The location of protein B23 in subcompartments of the nucleolus that contain preribosomal RNA suggests that its ribonuclease activity plays a role in the processing of preribosomal RNA.  相似文献   

8.
We have purified a Ca2+ dependent ribonuclease from the oocytes of Xenopus leavis. Two properties of this ribonuclease set it apart from other known nucleases. First, Ca2+ was required for ribonuclease activity, and Mg2+ would not substitute. Second, the enzyme specifically degraded RNA and digestion of double or single stranded DNA was not observed. Ca2+ dependent ribonuclease activity of the purified 36-kDa protein was directly observed after renaturation of the protein following electrophoresis in an SDS-Laemmli gel. In addition, the enzyme was shown to have endoribonuclease activity at numerous sites. The Ca2+ dependence suggests that the ribonuclease activity may be modulated by changes in the level of intracellular Ca2+ and thereby provide a direct link to signal transduction systems.  相似文献   

9.
Nonprotein amino acid furanomycin was found to bind with Escherichia coli isoleucyl-tRNA synthetase (IleRS) almost as tightly as the substrate L-isoleucine. The conformation of furanomycin bound to the enzyme was determined by NMR analyses including the transferred nuclear Overhauser effect method. The conformation of IleRS-bound furanomycin was similar to that of L-isoleucine, although the chemical structure of furanomycin is unlike that of L-isoleucine. By E. coli IleRS, E. coli tRNAIle was charged with furanomycin as efficiently as with L-isoleucine. Furthermore, furanomycyl-tRNAIle was bound to polypeptide chain elongation factor Tu as tightly as isoleucyl-tRNAIle. Furanomycin was found to be incorporated into beta-lactamase precursor by in vitro protein biosynthesis. A newly designed amino acid will probably be incorporated into proteins, provided that the new amino acid takes a similar conformation as a protein-constituting amino acid in the active site of an aminoacyl-tRNA synthetase.  相似文献   

10.
11.
12.
Poly(A)-specific ribonuclease was co-purified with poly(A) polymerase from Vigna unguiculata seedlings. Both activities were separated into two forms (enzymes I and II) by a final hydrophobic column chromatography. The enzyme I preparation, which was homogeneous as examined by SDS/PAGE, had both poly(A) polymerase and poly(A)-specific ribonuclease activities. The antibody raised to the enzyme I preparation precipitated both enzyme activities. These indicate that a single polypeptide (Mr 63,000) is responsible for both poly(A)-polymerizing and poly(A)-hydrolyzing activities. The poly(A)-specific ribonuclease was a 3'-exonuclease specific to single-stranded poly(A), forming 5'AMP as the sole reaction product. The hydrolytic activity required either Mn2+ or Mg2+ with different optimum concentrations, whereas the polymerizing activity required Mn2+ but not Mg2+. ATP and PPi had little or no effect on the poly(A)-specific ribonuclease activity.  相似文献   

13.
A specific endonuclease involved in the processing of tRNA precursors was isolated and partially purified from the posterior silk gland of Bombyx mori, and designated as RNase P.Bmo. This enzyme was shown to catalyze the conversion of 4.5 S precursor RNA to 4.1 S RNA by trimming the 5'-additional segment from the precursor RNA. RNase P.Bmo required divalent cations, Mg2+ or Mn2+. In the presence of these divalent cations, K+ or NH4+ activated the RNase P.Bmo reaction. Optimum pH was observed around 8.0. Ribosomal RNA's and mature tRNA from the silk gland were not cleaved by RNase P.Bmo. A 4.5 S precursor RNA fraction containing formycin, an adenosine analog, was less susceptible to RNase P.Bmo than the normal one. These results indicate that RNase P.Bmo has a high substrate specificity. An additional nuclease(s) was isolated. This activity was assumed to remove the extra 3'-segment of the 4.5 S precursor RNA.  相似文献   

14.
15.
We have constructed a plasmid expressing E. coli M1 RNA, the catalytic RNA subunit of ribonuclease P, under the control of a phage T7 promoter. The active M1 RNA species synthesized in vitro by T7 RNA polymerase from this vector was reacted with the tRNA(Gln) - tRNA(Leu) precursor RNA (Band K) encoded by phage T4. Only the tRNA(Leu) moiety of this dimeric precursor RNA contains the 3' terminal C-C-A sequence common to all tRNAs. We observed that protein-free M1 RNA was capable of processing the precursor RNA at the 5' ends of both tRNA tRNA sequences. The rate of cleavage of the tRNA(Gln) sequence was more strongly dependent on [Mg2+] than that of tRNA(Leu), increasing severalfold between 100 and 500 mM Mg2+, conditions under which the rate of cleavage at the tRNA(Leu) sequence was constant.  相似文献   

16.
17.
Two forms of enzyme with ribonuclease H (RNase H) [EC 3.1.4.34] activities, have been partially purified from cultured plant cells, strain GD-2, derived from carrot root. One is an Mn2+-dependent RNase H, and the second is an Mg2+-dependent RNase H. These enzymes degrade RNA specifically in RNA-DNA hybrid structures. They were eluted at around 0.2 M and 0.4 M potassium chloride in phosphocellulose chromatography, and were further purified using blue Sepharose. Mg2+-dependent RNase H exhibits maximal activity at pH 9.0, and requires 10 to 15 mM Mg2+ for maximal activity, whereas the Mn2+-dependent enzyme is most active at pH 8.0, is maximally active at an Mn2+ concentration of 0.4 mM, and has some activity with Mg2+. Both enzymes require a sulfhydryl reagent for maximal activity. The enzymes liberate a mixture of oligonucleotides with 5'-phosphate and 3'-hydroxyl termini. The apparent molecular weight of the Mg2+-dependent RNase H was estimated to 18--20 X 10(4) and that of the Mn 2+- dependent RNase H was estimated to be 14 x 10(4) by gel filtration.  相似文献   

18.
Ribonucleases O and Q, the two putative nucleolytic activities which we detected previously in the crude extract from a thermosensitive ribonuclease P mutant (TS241) of Escherichia coli and which were shown to function in the processing of tRNA precursors in vitro, were partially purified from the 1000000 x g supernatant fraction of E. coli Q13. In the course of purification of these enzymes, the total RNAs synthesized in the thermosensitive mutant at the restrictive temperature were used as the substrates and the activities were identified from disappearance or alteration of specific tRNA precursor molecules in polyacrylamide gel electrophoresis. The purified ribonuclease O preparation cleaved specifically the multimeric tRNA precursors at the spacer regions. The purified ribonuclease Q preparation removed, in accordance with the definition of this enzyme, extra nucleotides from the 3'-terminal ends of monomeric tRNA precursors. Some properties of these two nucleases were investigated. In addition to these nucleases, another exonuclease (tentatively designated ribonuclease Y) and ribonuclease P, a well-characterized endonuclease, were also purified. The sequential mode of the processing of tRNA precursors, originally observed in the cleavage reactions with the crude extracts in vitro, was supported by studies with the purified enzyme preparations.  相似文献   

19.
The interaction between phenylalanyl-tRNA synthetase from yeast and Escherichia coli and tRNAPhe (yeast), tRNASer (yeast), tRNA1Val (E. coli) has been investigated by ultracentrifugation analysis, fluorescence titrations and fast kinetic techniques. The fluorescence of the Y-base of tRNAPhe and the intrinsic fluorescence of the synthetases have been used as optical indicators. 1. Specific complexes between phenylalanyl-tRNA synthetase and tRNAPhe from yeast are formed in a two-step mechanism: a nearly diffusion-controlled recombination is followed by a fast conformational transition. Binding constants, rate constants and changes in the quantum yield of the Y-base fluorescence upon binding are given under a variety of conditions with respect to pH, added salt, concentration of Mg2+ ions and temperature. 2. Heterologous complexes between phenylalanyl-tRNA synthetase (E. coli) and tRNAPhe (yeast) are formed in a similar two-step mechanism as the specific complexes; the conformational transition, however, is slower by a factor 4-5. 3. Formation of non-specific complexes between phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) proceeds in a one-step mechanism. Phenylalanyl-tRNA synthetase (yeast) binds either two molecules of tRNAPhe (yeast) or only one molecule of tRNATyr (E. coli); tRNA1Val (E. coli) or tRNASer (yeast) are also bound in a 1:1 stoichiometry. Binding constants for complexes of phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) are determined under a variety of conditions. In contrast to specific complex formation, non-specific binding is disfavoured by the presence of Mg2+ ions, and is not affected by pH and the presence of pyrophosphate. The difference in the stabilities of specific and non-specific complexes can be varied by a factor of 2--100 depending on the ionic conditions. Discrimination of cognate and non-cognate tRNA by phenylalanyl-tRNA synthetase (yeast) is discussed in terms of the binding mechanism, the topology of the binding sites, the nature of interacting forces and the relation between specificity and ionic conditions.  相似文献   

20.
T Nomura  A Ishihama 《The EMBO journal》1988,7(11):3539-3545
The leuX gene of Escherichia coli codes for a suppressor tRNA and forms a single gene operon containing its own promoter and Q-independent terminator. An analysis of the in vitro processing of leuX precursor revealed that the processing of the 5' end took place in a single-step reaction catalysed by RNase P while the 3' processing involved two successive reactions. The endonucleolytic cleavage activity of the 3' precursor sequence was found to copurify with RNase P. Heat inactivation of thermosensitive RNase P from two independent E. coli mutants abolished the cleavage activity of both the 5' and 3' ends. These results altogether suggest that RNase P carries the activity of 3' end cleavage as well as that of 5' processing. In the presence of Mg2+ alone, the leuX precursor was found to be self-cleaved at a site approximately 13 nt inside from the 5' end of mature tRNA. The self-cleaved precursor tRNA was no longer processed by the 3' endonuclease, suggesting that the 3' endonuclease recognizes a specific conformation of the precursor tRNA for action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号