首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mao JW  Wang LW  Jacob T  Sun XR  Li H  Zhu LY  Li P  Zhong P  Nie SH  Chen LX 《Cell research》2005,15(5):371-378
The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5‘-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of nonmigrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.  相似文献   

2.
鼻咽癌细胞ClC-3在细胞周期中的表达   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatoryvolumedecrease,RVD)的关系.结果显示,CNE-2Z细胞表达ClC-3.ClC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性.G1期细胞的ClC-3表达水平较低而S期则较高,M期细胞的表达水平中等.在细胞周期中,ClC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比.上述观察结果提示,ClC-3可能参与细胞周期的调节,但CNE-2Z细胞中的ClC-3可能不是与RVD有关的氯通道.  相似文献   

3.
鼻咽癌细胞CIC-3在细胞周期中的表达   总被引:5,自引:0,他引:5  
Wang LW  Chen LX  Jacob T 《生理学报》2004,56(2):230-236
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因CIC-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatory volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。CIC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的CIC-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,CIC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,CIC-3可能参与细胞周期的调节,但CNE-2Z细胞中的CIC-3可能不是与RVD有关的氯通道。  相似文献   

4.
迁移的鼻咽癌细胞容积激活性氯电流   总被引:6,自引:1,他引:5  
Mao JW  Wang LW  Sun XR  Zhu LY  Li P  Zhong P  Nie SH  Jacob T  Chen LX 《生理学报》2004,56(4):525-530
用膜片钳技术研究了Transwell小室趋化迁移后的鼻咽癌CNE-2Z细胞容积激活性CT电流。47%低渗刺激迁移后的CNE-2Z细胞诱发容积激活性氯电流,与未迁移细胞相比,其特性以及其对氯通道阻断剂的敏感性发生明显的变化,此电流的密度明显高于未迁移细胞,而且该电流几乎完全被氯通道阻断剂adenosine-5'-triphosphate(ATP,10 mmol/L)、5-nitro-2-3-phenylpropylamino benzoic acid(NPPB,100μmol/L)和他莫昔芬(30μmol/L)抑制,其中NPPB和他莫昔芬对迁移细胞的抑制作用明显强于未迁移细胞。迁移后的CNE-2Z细胞容积激活性氯通道对阴离子的通透性为:Br>Cl>I>葡萄糖酸,与未迁移细胞(I>Br>Cl>葡萄糖酸)不同。结果提示,容积激活性氯通道可能参与CNE-2Z细胞的迁移过程。  相似文献   

5.
鼻咽癌细胞CIC-3在细胞周期中的表达(英文)   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮cNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatorly volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。C1C-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的C1C-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,C1C-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,C1C-3可能参与细胞周期的调节,但CNE-2Z细胞中的C1C-3可能不是与RVD有关的氯通道。  相似文献   

6.
Regulatory volume decrease is actively modulated during the cell cycle   总被引:15,自引:0,他引:15  
Nasopharyngeal carcinoma cells, CNE-2Z, when swollen by 47% hypotonic solution, exhibited a regulatory volume decrease (RVD). The RVD was inhibited by extracellular applications of the chloride channel blockers tamoxifen (30 microM; 61% inhibition), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM; 60% inhibition), and ATP (10 mM; 91% inhibition). The level and time constant of RVD varied greatly between cells. Most cells conducted an incomplete RVD, but a few had the ability to recover their volume completely. There was no obvious correlation between cell volume and RVD capacity. Flow cytometric analysis showed that highly synchronous cells were obtained by the mitotic shake-off technique and that the cells progressed through the cell cycle synchronously when incubated in culture medium. Combined application of DNA synthesis inhibitors, thymidine and hydroxyurea arrested cells at the G1/S boundary and 87% of the cells reached S phase 4 h after being released. RVD capacity changed significantly during the cell cycle progression in cells synchronized by shake-off technique. RVD capacity being at its highest in G1 phase and lowest in S phase. The RVD capacity in G1 (shake-off cells sampled after 4 h of incubation), S (obtained by chemical arrest), and M cells (selected under microscope) was 73, 33, and 58%, respectively, and the time constants were 435, 769, and 2,000 sec, respectively. We conclude that RVD capacity is actively modulated in the cell cycle and RVD may play an important role in cell cycle progress.  相似文献   

7.
Chloride channels are expressed ubiquitously in different cells. However, the activation and roles of volume-activated chloride channels under normal isotonic conditions are not clarified, especially in lymphatic cells. In this study, the activation of basal and volume-activated chloride currents and their roles in maintenance of basal cell volume under isotonic conditions were investigated in human acute lymphoblastic leukemia Molt4 cells. The patch-clamp technique and time-lapse image analysis were employed to record whole-cell currents and cell volume changes. Under isotonic conditions, a basal chloride current was recorded. The current was weakly outward-rectified and volume-sensitive and was not inactivated obviously in the observation period. A 47% hypertonic bath solution and the chloride channel blockers NPPB and tamoxifen suppressed the current. Exposure of cells to 47% hypotonic bath solution activated further the basal current. The hypotonicity-activated current possessed properties similar to those of the basal current and was inhibited by NPPB, tamoxifen, ATP and hypertonic bath solution. Furthermore, extracellular hypotonic challenges swelled the cells and induced a regulatory volume decrease (RVD). Extracellular applications of NPPB, tamoxifen and ATP swelled the cells under isotonic conditions and inhibited the RVD induced by hypotonic cell swelling. The results suggest that some volume-activated chloride channels are activated under isotonic conditions, resulting in the appearance of the basal chloride current, which plays an important role in the maintenance of basal cell volume in lymphoblastic leukemia cells. Chloride channels can be activated further to induce a regulatory volume recovery when cells are swollen.  相似文献   

8.
In this study, the activation mechanisms of the background chloride current and the role of the current in maintaining of basal cell volume were investigated in human nasopharyngeal carcinoma CNE-2Z cells. Under isotonic conditions, a background chloride current was recorded by the patch clamp technique. The current presented the properties similar to those of the volume-activated chloride current in the same cell line and was inhibited by chloride channel blockers or by cell shrinkage induced by hypertonic challenges. Extracellular applications of reactive blue 2, a purinergic receptor antagonist, suppressed the background chloride current in a concentration-dependent manner under isotonic conditions. Depletion of extracellular ATP with apyrase or inhibition of ATP release from cells by gadolinium chloride decreased the background current. Extracellular applications of micromolar concentrations of ATP activated a chloride current which was inhibited by chloride channel blockers and hypertonic solutions. Extracellular ATP could also reverse the action of gadolinium chloride. Transfection of CNE-2Z cells with ClC-3 siRNA knocked down expression of ClC-3 proteins, attenuated the background chloride current and prevented activation of the ATP-induced current. Furthermore, knockdown of ClC-3 expression or exposures of cells to ATP (10 mM), the chloride channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, or reactive blue 2 increased cell volume under isotonic conditions. The results suggest that ClC-3 protein may be a main component of background chloride channels which can be activated under isotonic conditions by autocrine/paracrine ATP through purinergic receptor pathways; the background current is involved in maintenance of basal cell volume.  相似文献   

9.
Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I(-) > Br(-) > Cl(-) > gluconate(-). Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.  相似文献   

10.
Volume-activated chloride channel (VACC) plays vital roles in many physiological functions. In bile duct epithelium, VACC actively participates in biliary secretion and cell volume regulation, and it mediates regulatory volume decrease (RVD). Recently, we have shown that mouse cholangiocytes have an intact RVD via VACC and K+ conductance. However, such cell volume regulation was not studied in the normal human cholangiocyte. Volume measurement by Coulter counter and whole-cell patch clamp technique were used to characterize the RVD and VACC in human cholangiocyte cell line (HBDC). When exposed to hypotonic solution, HBDC exhibited an intact RVD, which was inhibited by 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), NPPB (5-nitro-2′- (3-phenylpropylamino)-benzoate), DIDS (4,4′-diisothiocyanatostilbene-2-disulfonic acid), and tamoxifen, but was not affected by the removal of extracellular calcium. During RVD, HBDC exhibited large, outwardly rectifying currents and time-dependent inactivation at positive potential. The amplitude of the outward current was approximately 3 times of that of the inward current, and this volume-activated current returned to the baseline when switched to isotonic solution. The amplitude and reversal potential of the volume-activated current was dependent on Cl concentration, and the VACC was significantly inhibited by replacing chloride with gluconate, glutamate, sucrose, and acetate in the hypotonic solution. In addition, classical VACC inhibitors, such as NPPB or tamoxifen, inhibited the VACC. These inhibitory effects were reversible with washing out the inhibitors from the bath solution. The present study is the first to characterize and show that HBDC has an intact RVD, mediated by VACC, which has similar electrophysiological characteristics as that in mouse cholangiocytes.  相似文献   

11.
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was sensitive to Cl- channel blockers tamoxifen, NPPB and DIDS. In single-channel recordings, cell swelling activated a single channel current which showed outward rectification with open probability of 0.76 +/- 0.08 and conductance of 38.1 +/- 2.5 pS at +100 mV under [Cl-] symmetrical condition. I-V relation revealed the reversal potential as expected for a Cl(-)-selective channel. These results suggested that in mouse cardiac myocytes, swelling-activated, outward rectifying chloride channel with a single channel conductance of 38.1 +/- 2.5 pS (at +100 mV under [Cl-] symmetrical condition) underlies the volume regulatory Cl- channel.  相似文献   

12.
Modulation of ion permeability during the cell cycle is one of the key events in cell cycle progression. We have compared the effects of K+ and Cl- channel blockers on the cell cycle in synchronous and asynchronous NIH3T3 cells. The Cl- channel blocker 5-N-2-(3-phenylpropylamino) benzoic acid (NPPB; 0.2 mM) inhibited entry into S phase in synchronous cells but not in asynchronous cells, while the K+ channel blocker 4-aminopyridine (4-AP) showed similar inhibitory effects in both conditions. In NIH3T3 cells synchronized by serum deprivation/replenishment, G0-to-G1 transition occurred within 8 h after serum addition, and the G1/S checkpoint at 10-14 h. NPPB applied only at 0-8 or 8-14 h after serum addition inhibited entry into S phase. Cl- permeability measured as 125I efflux increased at 4 and 10 h after serum addition. Ki-67-negative cells, which represent quiescent G0 phase cells, progressively decreased in number until 8 h after serum addition. The Cl- channel blockers (NPPB and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid [DIDS]) but not the K+ channel blocker (4-AP) significantly decreased the rate of reduction in number of Ki-67-negative cells. These data indicate that an increase in Cl- permeability plays an important role in reentry of quiescent cells into the proliferating phase, in addition to the known effects on passage through the G1/S checkpoint.  相似文献   

13.
Cell migration is crucial for tumor metastasis. Membrane ion channels may play a major role in tumor cell migration because the cells must undergo changes in shape and volume during migration. In the present study, we used the transwell migration assay, an in vitro model for cell migration, and the patch-clamp technique to investigate the role of the volume-activated Cl(-) current (I(cl,vol)) in the regulation of the migration of nasopharyngeal carcinoma CNE-2Z cells. 5-Nitro-2- (3-phenylpropylamino) benzoic acid (NPPB) inhibited the I(cl,vol) and the migration of CNE-2Z cells with almost identical dose-dependent pattern (IC(50) of 98.1 microM and 97.7 microM for I(cl,vol) and cell migration, respectively). Extracellular adenosine triphosphate (ATP) also showed similar dose-dependent inhibitory effects on the currents and migration (IC(50) of 1.07mM, and 1.11mM for I(cl,vol) and cell migration, respectively). Hypotonic treatments, which activated I(cl,vol), increased cell migration. Exposure to hypertonic solutions, which was shown to suppress I(cl,vol), inhibited cell migration. Replacement of Cl(-) with gluconate, which is relatively chloride channel-impermeable, impaired cell migration, whereas substitution of Cl(-) by I(-) and Br(-), the chloride channel-permeable ions, did not significantly affect cell migration. Analysis of the effects of all the above treatments on I(cl,vol) and cell migration indicated that the inhibition of migration was positively correlated with the blockage of I(cl,vol), with a correlation coefficient (r) of 0.97, suggesting a functional relationship between I(cl,vol) and cell migration. These data suggest that the volume-activated Cl(-) channels are involved in cell migration.  相似文献   

14.
The whole-cell patch clamp technique was used to identify and to characterize volume-activated Cl- current (ICl(vol)) in fibroblasts derived from human periodontal ligament. During osmotic cell swelling, the cells exhibited an outwardly rectifying current, which was dependent upon the concentration of external Cl-. The anion permeability sequence of the chloride channel for anions was as follows: SCN- > I- > Br- > Cl- > F- > methanesulphonate > gluconate. Being an inhibitor of Cl- channels and Cl-/HCO exchanger, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) inhibited the currents with a voltage-dependence (EC50 57 micromol/l at +80 mV), and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), a carboxylate analogue Cl- channel blocker, showed the reversible suppression of the currents in a dose-dependent manner (EC50 = 59 micromol/l). Nimodipine, a selective dihydropyridine Ca2+ channel blocker suppressed ICl(vol) (EC50 = 66 micromol/l) and the effects were quite similar to those of NPPB. Nifedipine, another DHP blocker also inhibited the currents but with lesser efficacy (EC50 = 139 micromol/l). The removal of external Ca2+ or the addition of Cd2+ in the bath solution did not affect the blocking effects of nimodipine on ICl(vol). These findings demonstrate that the human fibroblasts ICl(Vol) was suppressed by nimodipine in an extracellular Ca2+-independent way. These results may provide, at least in part, an explanation for the Ca2+-independent decrease in Cl-/organic osmolytes efflux and RVD responses by nimodipine in some cell types.  相似文献   

15.
Volume-activated Cl(-) channels (VACCs) play vital roles in many cells including cholangiocytes. Previously, we characterized the VACCs in mouse cholangiocytes. Since calcium plays an important role in VACC regulation in many cells, we have studied the effect of calcium modulation on the regulatory volume decrease (RVD) and VACC currents in mouse bile duct cells (MBDCs). Cell volume measurements were assessed by a Coulter counter with cell sizer, and conventional whole-cell patch-clamp techniques were used to study the role of calcium on RVD and VACC currents. Cell volume study indicated that MBDCs exhibited RVD, which was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate (NPPB), 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra-acetoxymethyl ester (BAPTA-AM) but not by removal of extracellular calcium. During hypotonic challenge, MBDCs exhibited an outwardly rectified current, which was significantly inhibited by administration of classical chloride channel inhibitors such as NPPB and tamoxifen. Chelation of the intracellular calcium with BAPTA-AM or removal of extracellular calcium and calcium channel blocker had no significant effect on VACC currents during hypotonic challenge. In addition to VACC, MBDC had a calcium-activated chloride channel, which was inhibited by NPPB. The present study is the first to systemically study the role of calcium on the VACC and RVD in mouse cholangiocytes and demonstrates that a certain level of intracellular calcium is necessary for RVD but the activation of VACC during RVD does not require calcium. These findings suggest that calcium does not have a direct regulatory role on VACC but has a permissive role on RVD in cholangiocytes.  相似文献   

16.
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) has been reported to block Cl- channels in isolated rabbit nephrons with high potency (IC50 = 80 nM). The effects of this compound on Cl(-)-mediated transport processes in intestinal tissues have been studied using agonist-stimulated short-circuit current (T84) in Ussing chamber experiments and 36Cl- fluxes in monolayers of a colonic cell line (T84). NPPB inhibited PGE1-stimulated Isc in rabbit distal colon and ileum at concentrations in the range 20 to 100 microM. However, NPPB at the same concentrations also inhibited glucose-stimulated Isc in rabbit ileum, suggesting that its effects were not restricted to those on Cl- transport. Consistent with this, exposure of rabbit distal colon to 100 microM NPPB was found to reduce endogenous ATP levels by 69%, implying that, at these concentrations, NPPB could impair active transport processes by an effect on cellular energy metabolism. Clear evidence for a direct effect of NPPB on epithelial chloride channels was found in studies on Cl- fluxes in T84 cell monolayers. NPPB inhibited VIP-stimulated Cl- uptake into T84 cells with an IC50 of 414 microM. NPPB (1 mM) also inhibited Cl- efflux from pre-loaded cells confirming its effect as a weak Cl- channel blocker in this system.  相似文献   

17.
We have investigated the volume-activated transport of organic solutes in flounder erythrocytes. Osmotic swelling of cells suspended in a Na(+)-free medium led to increased membrane transport of taurine, glucose, and uridine. For each compound there was a significant lag period (1-2 min at 10 degrees C) between cell swelling and activation of the flux. The volume-activated fluxes of each of the substrates increased in parallel with increasing cell volume, and those of taurine and uridine increased linearly with concentration (up to 19 mM). The volume-activated fluxes of each of the three compounds showed similar sensitivities to a number of anion-selective channel blockers (5-nitro-2-(3-phenylpropylamino)benzoic acid > 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid approximately MK-196 > niflumic acid > furosemide); the IC50 for the inhibition of the volume-activated fluxes by NPPB was around 12 microM. The results are consistent with the hypothesis that the volume-activated transport of organic osmolytes is via a pathway with the characteristics of a volume-activated "chloride channel." This raises the question of whether the transport of organic substrates might represent a physiological role for such channels in other cell types.  相似文献   

18.
19.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

20.
ATP激活鼻咽癌细胞氯电流并减小细胞容积   总被引:1,自引:0,他引:1  
He QF  Wang LW  Mao JW  Sun XR  Li P  Zhong P  Nie SH  Jacob T  Chen LX 《生理学报》2004,56(6):691-696
采用全细胞膜片钳技术和细胞容积测量技术,在低分化鼻咽癌细胞株CNE-2Z上观察ATP 诱导的Cl- 电流的特性及其对细胞容积的影响。细胞外微摩尔水平的ATP 以剂量依赖性的方式激活一个具有弱外向整流特性,没有时间依赖性失活的电流,此电流的反转电位 [(-0.05 ± 0.03) mV]接近Cl- 的平衡电位(-0.9 mV)。用葡萄糖酸置换细胞外液Cl- 后, ATP 激活的电流明显减小并且反转电位发生改变。氯通道抑制剂NPPB (200 μmol/L)可以抑制这一电流 [(81.03 ± 9.3)%] 。此电流亦可被嘌呤受体(P2Y) 拮抗剂反应蓝 2 抑制 [(67.39 ± 5.06)%]。50 μmol/L 的 ATP 使在等渗状态下的细胞容积缩小, 替代和耗竭细胞外、内的Cl- 后, ATP 的这一作用消失。这些结果提示细胞外微摩尔水平的 ATP 可通过兴奋 P2Y 受体激活氯通道而产生与细胞容积调节相关的Cl- 电流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号