首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new prototype model for whole limb heat transfer is proposed wherein the countercurrent heat exchange from the large central arteries and veins in the core of the limb is coupled to microvascular models for the surrounding muscle and the cutaneous tissue layers. The local microvascular temperature field in the muscle tissue is described by the bioheat equation of Weinbaum and Jiji. The new model allows for an arbitrary axial variation of cross-sectional area and blood distribution between the muscle and cutaneous tissue, accounts for the blood flow to and heat loss from the hand and treats the venous return temperature and surface temperature distribution as unknowns that are determined as part of the solution to the overall boundary value problem. Representative solutions are presented for a wide range of environmental conditions for a limb in both the resting state and during exercise.  相似文献   

2.
A new formulation of the combined macro and microvascular model for heat transfer in a human arm developed in Song et al. [1] is proposed using a recently developed approximate theory for the heat exchange between countercurrent vessels embedded in a tissue cylinder with surface convection [2]. The latter theory is generalized herein to treat an arm with an arbitrary variation in cross-sectional area and continuous bleed off from the axial vessels to the muscle and cutaneous tissue. The local microvascular temperature field is described by a "hybrid" model which applies the Weinbaum-Jiji [3] and Pennes [4] equations in the peripheral and deeper tissue layers, respectively. To obtain reliable end conditions at the wrist and other model input parameters, a plethysmograph-calorimeter has been used to measure the blood flow distribution between the arm and hand circulations, and hand heat loss. The predictions of the model show good agreement with measurements for the axial surface temperature distribution in the arm and confirm the minimum in the axial temperature variation first observed by Pennes [4] for an arm in a warm environment.  相似文献   

3.
4.
Summary A mathematical model of the nephron was developed by writing a set of material balance equations for the flow of urea, salt and water along the length of the nephron. The geometric proportions have been elaborated in a foregoing study and are taken here as a basis, in particular the model configuration of the collecting duct system. The medullary interstitial solute concentration profiles are taken to increase linearly in outer and inner zone. The several transepithelial fluxes are driven by diffusion, osmosis, solvent drag and active transport. The development of osmotic gradient in the inner medulla is taken here to be caused by active secretion of salt into the descending limb of Henle's loop. The parameters in the flux equations for all parts of the nephron and the concentration values at the end of each tubular section are determined by collecting and averaging the values given in literature and by extrapolating the measurement data.The simulation of the model equations with these averaged parameters resulted in concentration profiles which at the ends of the several tubular sections were consistent with the values observed in experimental investigations.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

5.
6.
The amphibian limb is a model that has provided numerous insights into the principles and mechanisms of tissue and organ regeneration. While later stages of limb regeneration share mechanisms of growth control and patterning with limb development, the formation of a regeneration blastema is controlled by early events that are unique to regeneration. In this study, we present a stepwise experimental system based on induction of limb regeneration from skin wounds that will allow the identification and functional analysis of the molecules controlling this early, critical stage of regeneration. If a nerve is deviated to a skin wound on the side of a limb, an ectopic blastema is induced. If a piece of skin is grafted from the contralateral side of the limb to the wound site concomitantly with nerve deviation, the ectopic blastema continues to grow and forms an ectopic limb. Our analysis of dermal cell migration, contribution, and proliferation indicates that ectopic blastemas are equivalent to blastemas that form in response to limb amputation. Signals from nerves are required to induce formation of both ectopic and normal blastemas, and the diversity of positional information provided by blastema cells derived from opposite sides of the limb induces outgrowth and pattern formation. Hence, this novel and convenient stepwise model allows for the discovery of necessary and sufficient signals and conditions that control blastema formation, growth, and pattern formation during limb regeneration.  相似文献   

7.
8.
Today successful kidney transplantation procedures, techniques and immunosuppression protocols are a consequence of extensive research on animal models. During every transplantation surgery there are two crucial points for the success of the entire procedure: vascular (arterial end venous) and ureteral or ureterovesical anastomosis. Renal artery and vein of the donor kidney can be anastomosed end-to-side to the abdominal aorta and vena cava of the recipient (heterotopic transplantation), or end-to-end to the remains of renal artery and vain of the recipient (orthotopic transplantation) after nephrectomy. The ureter can be anastomosed also end-to-end or we can connect it directly to the urinary bladder (ureterocystoneostomy). The aim of this study was to elucidate which technique has better results according to: animal survival, reperfusion and perfusion of the transplanted kidney, elimination of the urine from the transplanted kidney and procedure costs. The study included 240 (120 donors and 120 recipients) male Wistar rats (3 months old; weight 250-300 g Our results are clearly showing that the end-to-end vascular anastomosis, and Paquins ureterovesical anastomosis have better results in transplanted rat kidneys survival and urine drainage compared to end-to-side vascular anastomosis and end-to-end ureteral anastomosis. Based on our experience we can conclude that described methods of end-to-end vascular anastomosis and Paquins ureterovesical anastomosis are less technically demanding and have a shorter learning curve. Therefore, we can recommend the use of described methods in kidney transplantation related researches.  相似文献   

9.
This paper deals with the problem of representing and generating unconstrained aiming movements of a limb by means of a neural network architecture. The network produced time trajectories of a limb from a starting posture toward targets specified by sensory stimuli. Thus the network performed a sensory-motor transformation. The experimenters trained the network using a bell-shaped velocity profile on the trajectories. This type of profile is characteristic of most movements performed by biological systems. We investigated the generalization capabilities of the network as well as its internal organization. Experiments performed during learning and on the trained network showed that: (i) the task could be learned by a three-layer sequential network; (ii) the network successfully generalized in trajectory space and adjusted the velocity profiles properly; (iii) the same task could not be learned by a linear network; (iv) after learning, the internal connections became organized into inhibitory and excitatory zones and encoded the main features of the training set; (v) the model was robust to noise on the input signals; (vi) the network exhibited attractor-dynamics properties; (vii) the network was able to solve the motorequivalence problem. A key feature of this work is the fact that the neural network was coupled to a mechanical model of a limb in which muscles are represented as springs. With this representation the model solved the problem of motor redundancy.  相似文献   

10.
Yang W  Tempelman RJ 《Genetics》2012,190(4):1491-1501
Hierarchical mixed effects models have been demonstrated to be powerful for predicting genomic merit of livestock and plants, on the basis of high-density single-nucleotide polymorphism (SNP) marker panels, and their use is being increasingly advocated for genomic predictions in human health. Two particularly popular approaches, labeled BayesA and BayesB, are based on specifying all SNP-associated effects to be independent of each other. BayesB extends BayesA by allowing a large proportion of SNP markers to be associated with null effects. We further extend these two models to specify SNP effects as being spatially correlated due to the chromosomally proximal effects of causal variants. These two models, that we respectively dub as ante-BayesA and ante-BayesB, are based on a first-order nonstationary antedependence specification between SNP effects. In a simulation study involving 20 replicate data sets, each analyzed at six different SNP marker densities with average LD levels ranging from r(2) = 0.15 to 0.31, the antedependence methods had significantly (P < 0.01) higher accuracies than their corresponding classical counterparts at higher LD levels (r(2) > 0. 24) with differences exceeding 3%. A cross-validation study was also conducted on the heterogeneous stock mice data resource (http://mus.well.ox.ac.uk/mouse/HS/) using 6-week body weights as the phenotype. The antedependence methods increased cross-validation prediction accuracies by up to 3.6% compared to their classical counterparts (P < 0.001). Finally, we applied our method to other benchmark data sets and demonstrated that the antedependence methods were more accurate than their classical counterparts for genomic predictions, even for individuals several generations beyond the training data.  相似文献   

11.
A method of estimating effectiveness factor for immobilized whole cells is developed by considering microbial cells as microspheres containing enzyme activity dispersed in the gel phase of the support matrix. The proper model equations describing the system are solved and the corresponding effectiveness factors calculated for various bead sizes, and numbers and activities of cells. The cell wall resistance (permeability) is found to be one of most important variables in the system. The model is applied in predicting the experimental data of other investigators.  相似文献   

12.
13.
Clinical application of composite tissue allograft transplants opened discussion on the restoration of facial deformities by allotransplantation. The authors introduce a hemifacial allograft transplant model to investigate the rationale for the development of functional tolerance across the major histocompatibility complex barrier. Eighteen rats in three groups were studied. The composite hemifacial allotransplantations including the ear and scalp were performed between Lewis-Brown Norway (RT1l+n) and Lewis (RT1l) rats and isotransplantations were performed between Lewis rats. Isograft controls (n = 6) and allograft controls (n = 6) did not receive treatment. Allografts in treatment group (n = 6) were treated with cyclosporine A 16 mg/kg/day during the first week; this dose was tapered to 2 mg/kg/day over 4 weeks and maintained at this level thereafter. Functional tolerance to face allografts was evaluated clinically and histologically. Donor-specific chimerism was assessed at days 21 and 63 by flow cytometry. In vitro evaluation of donor-specific tolerance was performed by mixed lymphocyte reaction at day 160 after transplantation. Isograft controls survived indefinitely. All nontreated allografts were rejected within 5 to 7 days after transplantation, as confirmed by histopathologic analysis. Five of six face allografts under the cyclosporine A protocol showed no signs of rejection for up to 240 days and remained alive and under evaluation, whereas one animal showed signs of rejection at day 140. This was reversed by adjustment of the cyclosporine A dose. At day 21 after transplantation, flow cytometric analysis of the donor-specific chimerism showed 1.11 percent of double-positive CD4FITC/RT1Ac-Cy7 and 1.43 percent of double-positive CD8PE/RT1Ac-Cy7 T-cell populations in the peripheral blood of hemiface allotransplant recipients. The chimerism level of double-positive CD4FITC/RT1Ac-Cy7 T cells increased to 3.39 percent, whereas it remained stable for the double-positive CD8PE/RT1Ac-Cy7 T-cell population at day 63 after transplantation (1.00 percent). The mixed lymphocyte reaction assay at day 160 after transplantation revealed donor-specific tolerance to donor (Lewis-Brown Norway) antigens and strong reactivity to the third-party (ACI) alloantigens. In this study, donor-specific chimerism and functional tolerance were induced in hemifacial allograft transplants across the major histocompatibility complex barrier under cyclosporine A monotherapy protocol. This model will allow further studies on tolerance induction protocols.  相似文献   

14.
15.
16.
17.
It is often necessary to have a small animal model for hyperkalemia for use in electrolyte and acid base experiments. In reviewing the literature, we found a paucity of such animal models, especially for acute hyperkalemia. We have had difficulty in inducing acute hyperkalemia in rats using potassium chloride alone either intravenously or intraperitoneally and felt the need for an easily reproducible small animal model for hyperkalemia. We gave experimental animals a combination of intraperitoneal amiloride 3 mg/kg and potassium chloride 2 meq/kg in two divided doses while control animals received only the potassium chloride. Initial serum potassiums were similar but at 2 hr, the experimental group had significantly higher serum potassium levels which were sustained throughout the 8 hr of the experiment. Arterial blood gas revealed no significant difference in blood pH values at all time points during the experiment. We conclude that the combination of amiloride and potassium chloride is useful to produce acute hyperkalemia in rats and that this hyperkalemia is sustained beyond 6 hr. This model is convenient for use in metabolic experiments requiring the use of acutely hyperkalemic rats.  相似文献   

18.

Background  

Expression array data are used to predict biological functions of uncharacterized genes by comparing their expression profiles to those of characterized genes. While biologically plausible, this is both statistically and computationally challenging. Typical approaches are computationally expensive and ignore correlations among expression profiles and functional categories.  相似文献   

19.

Purpose

Life cycle cost (LCC) considerations are of increasing importance to offshore wind farm operators and their insurers to undertake long-term profitable investments and to make electricity generation more price-competitive. This paper presents a cost breakdown structure (CBS) and develops a whole life cost (WLC) analysis framework for offshore wind farms throughout their life span (~25 years).

Methods

A combined multivariate regression/neural network approach is developed to identify key cost drivers and evaluate all the costs associated with five phases of offshore wind projects, namely pre-development and consenting (P&C), production and acquisition (P&A), installation and commissioning (I&C), operation and maintenance (O&M) and decommissioning and disposal (D&D). Several critical factors such as geographical location and meteorological conditions, rated power and capacity factor of wind turbines, reliability of sub-systems and availability and accessibility of transportation means are taken into account in cost calculations. The O&M costs (including the cost of renewal and replacement, cost of lost production, cost of skilled maintenance labour and logistics cost) are assessed using the data available in failure databases (e.g. fault logs and O&M reports) and the data supplied by inspection agencies. A net present value (NPV) approach is used to quantify the current value of future cash flows, and then, a bottom-up estimate of the overall cost is obtained.

Results and discussion

The proposed model is tested on an offshore 500-MW baseline wind farm project, and the results are compared to experimental ones reported in the literature. Our results indicate that the capital cost of wind turbines and their installation costs account for the largest proportion of WLC, followed by the O&M costs. A sensitivity analysis is also conducted to identify those factors having the greatest impact on levelized cost of energy (LCOE).

Conclusions

The installed capacity of a wind farm, distance from shore and fault detection capability of the condition monitoring system are identified as parameters with significant influence on LCOE. Since the service lifetime of a wind farm is relatively long, a small change in interest rate leads to a large variation in the project’s total cost. The presented models not only assist stakeholders in evaluating the performance of ongoing projects but also help the wind farm developers reduce their costs in the medium–long term.
  相似文献   

20.
A general modeling technique for characterizing the blood flow and heat tranfer properties in the human limb is reported in this paper. The basic idea is to take the segmental approach so that a lumped model for each segment can be constructed. Consequently, a prototype segmental computer model is proposed which describes, in general terms, the interrelationships between the circulatory system and the thermal system of the limb. Simulation study of digital response to hand cooling is made and the results agree very well with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号