首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fumigant activity of 34 commercial essential oils was assessed on female adults and eggs of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) at three temperatures (5, 15, and 25 degrees C). Common thyme, cinnamon, and lemongrass oils were equally effective on twospotted spider mite adults showing 85.8-100% mortality at 5 and 10 microl/liter air at 25 degrees C. At a lower temperature of 15 degrees C, lemongrass and peppermint resulted in > or =90% mortality of adults at 10 microl/liter air. Only lemongrass was relatively active at 5 microl/liter air, at 15 degrees C. At 5 degrees C, lemongrass and peppermint caused significantly higher adult mortality than controls but only at 10 microl/liter air. Common thyme oil showed the highest ovicidal activity at 5 microl/liter air at 25 degrees C. Among the main components of common thyme and lemongrass oils, citral was lethal to twospotted spider mite adults at all tested temperatures. Carvacrol, thymol, and citral caused the same inhibitory effects on the hatch of twospotted spider mite eggs at 25 degrees C. However, citral was more active than other compounds to twospotted spider mite eggs at 15 degrees C. Therefore, we conclude that citral has the best potential for development as a fumigant against twospotted spider mite on agricultural products harvested late in the growing season.  相似文献   

2.
Fifty-three plant essential oils were tested for their toxicity against eggs and adults of Tetranychus urticae Koch as well as adults of Phytoseiulus persimilis Athias-Henriot, by using a filter paper diffusion bioassay without allowing direct contact. Responses varied according to oil type and dose, and mite species. In a plastic container (4.5 by 9.5 cm) bioassay at 14 x 10(-3) microl/ml air, caraway seed, citronella java, lemon eucalyptus, pennyroyal, and peppermint oils gave > 90% mortality against adult T. urticae, whereas 82 and 81% mortality was observed with sage and spearmint oils, respectively. With the exception of sage oil, the other six essential oils were highly effective against T. urticae eggs at 9.3 x 10(-3) microl/ml air. Against adult P. persimilis, these six test oils caused > 90% mortality at 7.1 x 10(-3) microl/ml air. Particularly peppermint oil at 4.7 x 10(-3) microl/ml air was highly toxic. In an acrylic cage (30 by 30 by 40 cm ) test, lemon eucalyptus, pennyroyal, peppermint, and spearmint oils were highly effective against adult T. urticae at 1.4 x 10(-3) microl/ml air. These results indicate that the mode of delivery of these essential oils was largely a result of action in the vapor phase via the respiratory system. The essential oils described herein merit further study as potential fumigants for T. urticae control.  相似文献   

3.
In the present study we investigated the respiratory burst (RB) activity of Atlantic cod (Gadus morhua L.) blood phagocytes and we evaluated how the RB activity of cod blood cells differ from that of trout. The RB activities were measured directly from highly diluted whole blood as luminol-amplified chemiluminescence (CL) under various conditions. Studies regarding the blood dilutions for cod whole blood chemiluminescence measurements (WBCL) revealed that at a final blood dilution of 1.5 microl ml(-1) or less the CL response was strictly proportional to the number of phagocytes. This range of blood dilution did not markedly differ from that of trout. However, the opsonisation capacity of cod plasma was markedly poorer. The RB activity of phagocytes was most active at 15 degrees C when heterologous cod serum was used as a source of opsonin, whereas at final blood dilution of 8.0 microl ml(-1) (when homologous cod plasma was at a higher concentration) the highest RB activity was observed at 10 degrees C. Aeromonas salmonicida strain MT004 (As MT004) induced higher RB activity than the two known pathogens for cod, atypical A. salmonicida and Vibrio anguillarum. Cod blood phagocytes were more responsive to plastic surfaces and the adhesion response of phagocytes was partly inhibited but did not totally vanish even at a final gelatin concentration of 0.4%. Moreover, cod serum enhanced the adherence of phagocytes and cod blood phagocytes also showed slow spontaneous degranulation. Finally, within the tested anticoagulants (heparin, Na-citrate, EDTA) heparin treated blood phagocytes generated the highest RB activity.  相似文献   

4.
《Journal of Asia》2006,9(4):369-373
The lesser grain borer, Rhyzopertha dominica is a major insect pests of stored grain in the tropics. Vegetable oils (Chamomile, Sweet almond and Coconut) at 2.5, 3.5, 5, 7 and 10 ml/kg were tested against Rhyzopertha dominica (F.) in wheat grain. All bio-assays were conducted at 30C. Treatments with vegetable oils at high dose (10 ml/kg) achieving over 95% control within 24 h of exposure to freshly treated grain. There was a little difference between the three oils in their effect. Persistence of oils in grains were tested at short-term storage time (48, 72 and 96h) and intermediate-term (10, 20 and 30 days) after treatments. The activity of all products decreased with storage period. Seed viability was reduced by the high dose (10 ml/kg) of oils treatments.  相似文献   

5.
In order to measure changes in physiological CO concentrations in blood with good accuracy, a method was developed using gas chromatography with flame ionisation detection (250 degrees C). A nickel catalyst system was fitted to convert CO to methane at 375 degrees C after separation with a molecular sieve column at 35 degrees C. Helium was used as carrier at 30 ml/min. Porcine or human blood (400 microl) was sampled in gastight tubes and treated with sulfuric acid and saponin (800 microl). Accuracy was 1.4% and 1.5% (RSD), respectively. Precision was 2.8% (porcine blood). Limit of detection was 0.01 nmol/ml gas and limit of quantification 12 nmol/ml blood. Calibration was made in the interval 12-514 nmol/ml blood (corresponding to 0.1-6% COHb). Samples were stable for at least a month at +4 degrees C. This paper describes a method with high sensitivity and good accuracy, suitable for analysis of low CO concentrations.  相似文献   

6.
A key constraint on increasing wheat production in Iran and some neighbouring countries is Sunn pest which cause severe damage to vegetative growth stage of plant in the early season. It also feeds on wheat grain in late growth stage of plants thus damaged wheat grains loose their bakery properties. Because of injecting protease enzymes into the grain during feeding, enzymes degrade gluten proteins and cause rapid relaxation of dough which results in the production of bread with poor volume and texture. Organophosphorus insecticides are the main pesticides used to control the insect pest. However, suitable reduction in pest population has not been achieved partly due to resistance to pesticides. Esterase plays crucial roles in insect physiology and detoxifies a broad range of xenobiotics including insecticides. Enhanced esterase activity is a major mechanism if insecticide resistance and has been detected in a number of insects. To evaluate esterase activity adult bugs were collected from wheat field in Karaj area of Iran and transferred to the laboratory. For biochemical assay, two adult bugs (either males or females) were homogenized in 500 microl Na-phosphate buffer pH 7.2. The homogenates were centrifuged at 14000 g for 10 minutes at 4 degrees C. The supernatants as the enzyme source were pooled and stored at -20 degrees C for later use. For enzyme assay, 300 microl of supernatant was mixed with equal volume of substrates (30 mM alpha-naphthyl acetate or 30 mM beta-naphthyl acetate) and incubated at 30 degrees C for 30 minutes. Then, 50 microl of fast blue solution (150 mg fast blue B in 15 ml distilled water plus 35 ml 5% SDS) was added and esterase activity was determined in a spectrophotometer at 595 nm. Data showed that there are no differences in esterase activity between male and female. However, There was significant differences between hydrolysis of substrates, alpha-naphthyl acetate and beta-naphthyl acetate. Insect esterase hydrolyzes alpha-naphthyl acetate much more than beta-naphthyl acetate.  相似文献   

7.
Two yeasts, Candida oleophila (strain O) and Pichia anomala (strain K), were previously selected for their antagonistic activity against postharvest diseases on apples and pears. The objective of the study was to determine the efficacy of both antagonistic yeast's against wound postharvest pathogens of citrus fruits. The efficacy of both strains (applied at 10(5), 10(6) and 10(8) CFU/ml) was assessed against Penicillium digitatum and P. italicum inoculated after one hour (at a concentration of 10(5), 10(6) and 10(7) spores/ml) on citrus varieties 'clementine' and 'valencia-late'. Fruits were incubated for one week at 24 degrees C before measurement of lesion diameter. The protective levels were positively correlated with high concentration of antagonist and low concentration of pathogen. Highest protective levels (from 73 to 100%) were detected with the application of strain O or strain K at 10(8) CFU/ml whatever the pathogen (applied at 10(5) spores/ml) and the citrus variety. The antagonistic activity of both strains was also dependent on the incubation period before pathogen Inoculation. The protective level increased with time between application of the antagonist and inoculation of fungal spores. Whatever the yeast strain (10(8) CFU/ml). the protective level exceed 70% when wounded oranges were inoculated with P. digitatum or P. italicum (both at 10(6) spores/ml) 12 hours after yeast treatment. These protective levels reached 100% when the incubation period separating the antagonist application and the pathogenic inoculation was 24 hours. On the other hand, high protective levels (< 80%) were also observed against the sour rot decay on citrus variety 'clementine' caused by Geotrichum candidum inoculated at concentration of 10(6) spores/ml when strain O or strain K were applied at 10(8) CFU/ml 24 hours before pathogen. All these results support the potential practical application of both strains against major postharvest pathogens on citrus.  相似文献   

8.
Mortality due to fungal infections has increased substantially, becoming a worldwide problem in public health. As a contribution to the discovery of new antifungal agents, the properties of the heartwood essential oils of two trees growing in New Caledonia, Callitris neocaledonica and C. sulcata (Cupressaceae) were investigated. The essential oils extracted by hydrodistillation were characterized by GC-FID and GC/MS analyses. From C. neocaledonica oil, 31 constituents were identified, representing 97.0% of the total oil composition, which was mainly constituted by oxygenated sesquiterpenes (88%). Among them, guaiol (1; 30.2%), bulnesol (2; 12.5%), α-eudesmol (3; 10.5%), β-eudesmol (4; 10.5%), γ-eudesmol (10.2%), and elemol (4.9%) predominated. The chemical composition of C. sulcata oil, from which 39 constituents were identified (96.8% of the total oil composition), showed some similarities with that of C. neocaledonica oil. The major constituents were also oxygenated sesquiterpenes, accounting for 78.5% of the oil, amongst them, mainly compounds 1 (16.1%), 3 and 4 (9.7% each), as well as 2 (7.4%). The antifungal activity of the oils against clinical isolates of four dermatophytic fungi (Trichophyton mentagrophytes, T. rubrum, Microsporum canis, and M. gypseum) and six yeasts (Candida albicans, C. parapsilosis, C. glabrata, C. krusei, Cryptococcus neoformans, and Cryptococcus gattii) was tested by determining minimum inhibitory concentrations (MICs) using the microdilution method. The best antifungal activities of the C. neocaledonica and C. sulcata oils were obtained against C. krusei (MICs of 3.9 and 0.975?μg/ml, resp.). These MIC values were similar to those of the reference drugs itraconazole and fluconazole (1.0 and 0.5?mg/ml, resp.). The oils were also subjected to a screening for their possible DPPH(.) (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging activity. C. neocaledonica essential oil was more active than C. sulcata oil (93.3 vs. 32.2% DPPH(.) scavenged at 250?μg/ml).  相似文献   

9.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

10.
Repellency of six materials, two plant essential oil (clove and flax seed oils), two plant extracts (neem and harmal seed extracts) and two inorganic salts (silica dust and tri-calcium phosphate), to Sitophilus granarius L. were evaluated. Per cent repellency (PR) was determined for each material. Repellent effects of tested materials were proportional to concentration and higher concentration has stronger effect. Neem and flax seed oils had the strongest repellence effect (100%) after 2, 4 and 6?h of treatment at concentrations of 20, 10 and 5?mL/kg grains. Repellency activity of both oils was gradually decreased with the passage of time to reach its lowest level after 12?h of treatment. Their repellency tended to class IV or stronger during the whole exposure period. Neem and harmal seed extracts had maximum repellency (98.7 and 86.5%, respectively) at highest concentration (1000?ppm), while the lowest concentration (250?ppm) had minimum repellency effects (62.9 and 71.6%, respectively). Both extracts showed potent repellent activity against the pest and repellency values ranged between class IV and class V. The repellency action of silica dust and tri-calcium phosphate followed nearly the same trend as shown in case of oil and extracts. High repellent activities of silica dust and tri-calcium phosphate (87.3 and 97.4%, respectively) were observed at concentration of 5?g/kg, whereas the lowest mean of repellency (56.4 and 41.0%) was recorded at concentration of 1.29?g/kg. Thus, both salts exhibited high repellency activity against the weevil and repellency values ranged between class III and class IV.  相似文献   

11.
Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.  相似文献   

12.
Plant essential oils from 20 plant species were tested for their insecticidal activity against larvae of Lycoriella ingenua (Dufour) (Diptera: Sciaridae) by using a fumigation bioassay. Good insecticidal activity (>90%) against larvae of L. ingenua was achieved with essential oils of caraway seed Carum carvi (L.)], lemongrass [Cymbopogon citratus (D.C.) Stapf.], mandarine (Citrus reticulate Blanco), nutmeg (Myristica fragrans Houtt), cade (Juniperus oxycedrus L.), spearmint (Mentha spicata L.), cumin (Cuminum cyminum L.), and thyme red [Thymus vulgaris (L.)] oils at 30 X 10-3 mg/1 air. Among them, caraway seed, spearmint, cumin, and thyme red essential oils were highly effective against L. ingenua at 20 x 10(-3) mg/ml air. Analysis by gas chromatography-mass spectrometry led to identification of 4, 9, 8, and 17 compounds from caraway seed, spearmint, cumin, and thyme red oils, respectively. These compounds were tested individually for their insecticidal activities against larvae of L. ingenua, and compared with the toxicity of dichlorvos. Carvacrol, thymol, linalool, cuminaldehyde, p-cymen, terpinen-4-ol, and carvone was effective at 10 x 10(-3) mg/l. The insecticidal activity of dichlorvos was 60% at 10 x 10(-3) mg/ml. Effects of four selected plant essential oils on growth of oyster mushroom, Pleurotus ostreatus, also were investigated.  相似文献   

13.
This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22 degrees C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (10(6) to 10(7) CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22 degrees C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5 degrees C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22 degrees C than at 5 degrees C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.  相似文献   

14.
The essential oils from rhizomes of Alpinia conchigera Griff, Zingiber zerumbet Smitt, Curcuma zedoaria (Berg.) Roscoe; their major compounds (camphene, camphor, 1,8-cineole, alpha-humulene, isoborneol, alpha-pinene, beta-pinene and terpinen-4-ol); and synthetic essential oils comprised of mixtures of major pure compounds in the same ratios as the extracted essential oils were tested for contact, feeding reduction, and repellency against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) adults. Via topical applications, the three extracted oils had similar toxicity against S. zeamais (LD50 fiducial limits: 18-24 microg oil/mg insect). T. castaneum had similar sensitivity to all three oils (35-58 microg/mg), and it was less sensitive than S. zeamais. The LD50 values of synthetic A. conchigera and synthetic Z. zerumbet oils were similar to those of their corresponding extracted essential oils. The synthetic C. zedoaria oils showed lower contact toxicity than the extracted C. zedoaria oils to both insects. Sitophilus zeamais and T. castaneum were sensitive to terpinen-4-ol and isoborneol in contact toxicity tests. In antifeedant tests, the three extracted oils were able to decrease the consumption of flour disks, especially Z. zerumbet oils, whereas both insect species could feed on the flour disks treated with three synthetic essential oils. Only terpinen-4-ol deterred feeding in both insects. In repellency tests, A. conchigera oils at highest concentration repelled S. zeamais and T. castaneum. None of the synthetic essential oils repelled S. zeamais (315 microl/cm2) and T. castaneum (31 microl/cm2) Only terpinen-4-ol showed repellent activity against both insects.  相似文献   

15.
Spores, sporeforming vegetative cells, and asporogenous populations were enumerated in two semicontinuous anaerobic fermentors digesting municipal primary sludge at 35 and 55 degrees C for more than 87 days. In the 35 degrees C fermentor, the anaerobic total population was 312.5 X 10(6)/ml, with 25.0 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 23.1 X 10(6), 59.2 X 10(6), 26.2 X 10(6), and 7.3 X 10(6)/ml, respectively, with 2.8 X 10(6), 6.7 X 10(6), 3.4 X 10(6), and 1.5 X 10(6)/ml being sporogenous, respectively. The sporeformers accounted for 8.0 to 20.0% of each of the respective populations. In the 55 degrees C fermentor, the anaerobic total population was 512.5 X 10(6)/ml, with 336.6 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 97.7 X 10(6), 190.7 X 10(6), 75.8 X 10(6), and 11.2 X 10(6)/ml, respectively, with 47.8 X 10(6), 110.6 X 10(6), 43.3 X 10(6), and 5.1 X 10(6)/ml, respectively, being sporogenous. The sporeformers represented 45.5 to 65.7% of each of the respective populations. The numbers of thermophilic sporeforming vegetative cells in the 55 degrees C fermentor were 9.0 to 19.8 times higher than their counterparts in the 35 degrees C fermentor. Most sporeformers were in the vegetative state in the 35 and 55 degrees C fermentors. After 18 days of fermentation at 55 degrees C, sporeformers carried out most of the digestion; however, the digestion was shared by both sporeformers and asporogenous bacteria after 87 days of fermentation. In the 35 degrees C fermentor, asporogenous bacteria digested most of the sludge. During the 18- and 87-day experimental periods, sporeformers were never predominant.  相似文献   

16.
Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.  相似文献   

17.
M Chen 《Applied microbiology》1987,53(10):2414-2419
Spores, sporeforming vegetative cells, and asporogenous populations were enumerated in two semicontinuous anaerobic fermentors digesting municipal primary sludge at 35 and 55 degrees C for more than 87 days. In the 35 degrees C fermentor, the anaerobic total population was 312.5 X 10(6)/ml, with 25.0 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 23.1 X 10(6), 59.2 X 10(6), 26.2 X 10(6), and 7.3 X 10(6)/ml, respectively, with 2.8 X 10(6), 6.7 X 10(6), 3.4 X 10(6), and 1.5 X 10(6)/ml being sporogenous, respectively. The sporeformers accounted for 8.0 to 20.0% of each of the respective populations. In the 55 degrees C fermentor, the anaerobic total population was 512.5 X 10(6)/ml, with 336.6 X 10(6)/ml being sporogenous. The populations that digest casein, starch, pectin, and cellulose were 97.7 X 10(6), 190.7 X 10(6), 75.8 X 10(6), and 11.2 X 10(6)/ml, respectively, with 47.8 X 10(6), 110.6 X 10(6), 43.3 X 10(6), and 5.1 X 10(6)/ml, respectively, being sporogenous. The sporeformers represented 45.5 to 65.7% of each of the respective populations. The numbers of thermophilic sporeforming vegetative cells in the 55 degrees C fermentor were 9.0 to 19.8 times higher than their counterparts in the 35 degrees C fermentor. Most sporeformers were in the vegetative state in the 35 and 55 degrees C fermentors. After 18 days of fermentation at 55 degrees C, sporeformers carried out most of the digestion; however, the digestion was shared by both sporeformers and asporogenous bacteria after 87 days of fermentation. In the 35 degrees C fermentor, asporogenous bacteria digested most of the sludge. During the 18- and 87-day experimental periods, sporeformers were never predominant.  相似文献   

18.
Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (10(5) CFU/ml) Listeria monocytogenes were evaluated at 35 degrees C in water (10 or 85 degrees C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35 degrees C rather than lower (8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35 degrees C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.  相似文献   

19.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

20.
A method for rapidly and selectively isolating Salmonellae from buffer solutions and concentrating the bacteria by a factor of approximately 500 was developed. Anti-Salmonellae antibody was covalently linked to 40 microm polyacrylamide beads to prepare a solid phase with affinity for the bacteria. The beads were packed into 1-mm diameter glass tubes to form a column 20 microl in volume. Buffer containing Salmonellae at concentrations ranging from 10(2) to 10(6)/ml was pumped through the column to trap and concentrate the bacteria. At a flow rate of 50 microl/min, more than 95% of the bacteria introduced to the column were captured, while at 800 microl/min capture dropped to 32%. Specificity was high, with no detectable capture of Escherichia coli at a concentration of 10(5)/ml. Capture of more than 90% of Salmonellae in a 5-ml sample was achieved in 40 min by re-circulating the sample through the column at a flow rate of 500 microl/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号