首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axillary shoots from three selected white ash (Fraxinus americana L.) clones were harvested from in vitro shoot cultures. Roots were initiated by pulsing excised shoots for eight days in the dark in MS medium supplemented with 2% sucrose, 0.7% agar, 5 M NAA, and 1 M IBA. Pulsed shoots were transferred to a root elongation medium consisting of 25% MS macrosalts, full-strength microsalts and organics, 1% sucrose, 0.7% agar and no auxins. When roots were visible (6–10 days after transfer to root elongation medium), microplants were transferred to vessels containing the same minimal medium and tall fescue (Festuca elatior var. arundinacea (Schreb.) Wimm.) leaf extracts, leaf leachates, or soil leachates from plant boxes with and without tall fescue sod. After four weeks in vitro, primary adventitious and secondary root growth was reduced by extracts obtained from 5 and 10 g ground leaves per 100 ml of medium. Leachates obtained from 5 g soaked leaves per 100 ml of medium stimulated primary root growth. Soil leachates from bare soil also stimulated primary root growth. Variation was observed among the clones for root growth when plantlets were grown in extracts or leachates from tall fescue.  相似文献   

2.
The predatory effects of a Dipteran insect, Chaoborus, on the competition between exotic cladoceran Daphnia lumholtzi and two natives, D. catawba and D. pulex, were studied for a period of three years in a freshwater reservoir, Lake James, North Carolina (USA). D. lumholtzi was first encountered in September 1997 and it was present only between August and October when population densities of native species were low and that of Chaoborus sp. was high. The patterns observed in the population dynamics of the exotic D. lumholtzi and two natives, Chaoborus suggest that a predator mediated coexistence phenomenon might be taking place in Lake James. The strong positive correlation between Chaoborus and D. lumholtzi and the negative correlation between Chaoborus, D. catawba and D. pulex is supportive of this hypothesis.  相似文献   

3.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   

4.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

5.
6.
Arabidopsis halleri has the rare ability to colonize heavy metal‐polluted sites and is an emerging model for research on adaptation and metal hyperaccumulation. The aim of this study was to analyze the effect of plant–microbe interaction on the accumulation of cadmium (Cd) and zinc (Zn) in shoots of an ecotype of A. halleri grown in heavy metal‐contaminated soil and to compare the shoot proteome of plants grown solely in the presence of Cd and Zn or in the presence of these two metals and the autochthonous soil rhizosphere‐derived microorganisms. The results of this analysis emphasized the role of plant–microbe interaction in shoot metal accumulation. Differences in protein expression pattern, identified by a proteomic approach involving 2‐DE and MS, indicated a general upregulation of photosynthesis‐related proteins in plants exposed to metals and to metals plus microorganisms, suggesting that metal accumulation in shoots is an energy‐demanding process. The analysis also showed that proteins involved in plant defense mechanisms were downregulated indicating that heavy metals accumulation in leaves supplies a protection system and highlights a cross‐talk between heavy metal signaling and defense signaling.  相似文献   

7.
Uptake and distribution of cadmium in maize inbred lines   总被引:39,自引:0,他引:39  
Genotypic variation in uptake and distribution of cadmium (Cd) was studied in 19 inbred lines of maize (Zea mays L.). The inbred lines were grown for 27 days on an in situ Cd-contaminated sandy soil or for 20 days on nutrient solution culture with 10 µg Cd L-1. The Cd concentrations in the shoots showed large genotypic variation, ranging from 0.9 to 9.9 µg g-1 dry wt. for the Cd-contaminated soil and from 2.5 to 56.9 µg g-1 dry wt. for the nutrient solution culture. The inbred lines showed a similar ranking for the Cd concentrations in the shoots for both growth media (r2=0.89). Two main groups of inbreds were distinguished: a group with low shoot, but high root Cd concentrations (shoot: 7.4±5.3 µg g-1 dry wt.; root: 206.0±71.2 µg g-1 dry wt.; shoot Cd excluder) and a group with similar shoot and root Cd concentrations (shoot: 54.2±3.4 µg g-1 dry wt.; root: 75.6±11.2 µg g-1 dry wt.; non-shoot Cd excluder). The classification of the maize inbred lines and the near equal whole-plant Cd uptake between the two groups demonstrates that internal distribution rather than uptake is causing the genotypic differences in shoot Cd concentration of maize inbred lines. Zinc (Zn), a micronutrient chemically related to Cd, showed an almost similar distribution pattern for all maize inbred lines. The discrepancy in the internal distribution between Cd and Zn emphasizes the specificity of the Cd distribution in maize inbred lines.  相似文献   

8.
Differences in Cd accumulation and Cd tolerance between Thlaspi arvense ecotype Aigues Vives (AV) from a commercial grower in South France and ecotype Jena collected in the polluted urban area of Jena (Germany) were reported here. Ecotype Jena exhibited considerable Cd-tolerance. Shoot and root masses were unaffected and root elongation was even enhanced by exposure to 50 μM Cd. In contrast, growth of ecotype AV was severely affected by this Cd treatment. Ecotype Jena was much more efficient in excluding Cd from both roots and shoots than ecotype AV. Despite the efficient restriction of Cd transport from roots to shoots in Jena, this ecotype maintained high root to shoot transport of Zn and Fe under Cd exposure. Cd supply strongly decreased the activities of antioxidant enzymes in AV, while in the Cd resistant Jena these activities either remained unaffected (SOD, APX) or were increased (CAT) by Cd supply. In conclusion, naturally selected Cd-tolerance in Thlaspi arvense is due to efficient Cd exclusion. The mechanisms underlying exclusion of Cd from the shoots seem Cd-specific yet they did not affect the homeostasis of Fe and Zn in the shoots.  相似文献   

9.
Ricinus communis L. is a bioenergetic crop with high-biomass production and tolerance to cadmium (Cd) and lead (Pb), thus, the plant is a candidate crop for phytoremediation. Pot experiments were performed to study the effects of citric acid in enhancing phytoextraction of Cd/Pb by Ricinus communis L. Citric acid increased Cd and Pb contents in plant shoots in all treatments by about 78% and 18–45%, respectively, at the dosage of 10 mM kg?1 soil without affecting aboveground biomass production. Addition of citric acid reduced CEC, weakened soil adsorption of heavy metals and activated Cd and Pb in soil solutions. The acid-exchangeable fraction (BCR-1) of Pb remained lower than 7% and significantly increased with citric acid amendment. Respective increases in soil evaluation index induces by 14% and 19% under the Cd1Pb50 and Cd1Pb250 treatments upon addition of citric acid resulted in soil quality improvement. Ricinus communis L. has great potential in citric acid-assisted phytoextraction for Cd and Pb remediation.  相似文献   

10.
Summary Growth of pollen tubes ofNicotiana tabacum W 38 in a defined liquid medium buffered at pH 5.9 and containing sucrose, amino-acids, boric acid, salts and an antibacterial agent was stimulated by the addition of poly(ethylene glycol) 6000 (PEG-6000) and Cu(II) salts. In the absence of both these supplements, up to 50% of the hydrated pollen grains did not develop further, and the germinated tubes were slow-growing and abnormal, with thickened walls, kinked growth, and fragile, swollen tips containing granular cytoplasm. Addition of 10–15% (w/v) purified PEG-6000 increased germination to 80–90% and prevented the progressive bursting of pollen grains and tube tips, but growth was still slow and kinked and tips remained swollen. Addition of 30 M CuSO4 did not stimulate germination or prevent tip bursting, but produced straight-growing tubes with smooth-sided tips resembling the tips of tubes growing through stylar tissue; the free Cu2+ concentration under these conditions was about 1.0 M due to chelation by amino-acids, and similar tube morphologies were obtained with 1.0–1.5 M added CuSO4 when NH4Cl replaced the amino-acids. When the medium containing amino-acids was supplemented with both 12.5% PEG-6000 and 30 M CuSO4, long-term (48 h) growth of straight pollen tubes with smooth-sided tips, thin walls and long ladders of callose plugs was observed; growth occurred at 250 m/h, approximately 30–40% of the rate observed in the style. Although omission of CuSO4 from this complete medium severely affected tube growth and callose plug deposition, it did not alter the timing of generative-nucleus division, and thus the different parameters associated with the second phase of pollen-tube growth can be uncoupled in culture. High levels of FeSO4 (300 M) had a similar morphogenetic effect to CuSO4, but addition of 300 M L-ascorbate or D-iso-ascorbate was required to prevent precipitation of Fe(III) oxide and prolong the stimulation of pollen-tube growth; EDTA removed the morphogenetic effect of both CuSO4 and FeSO4. Further, an impure grade of PEG-4000 was contaminated with an organic morphogen that allowed continued slow growth of pollen tubes with smooth, straight-sided tips in the absence of added CuSO4 or FeSO4, with tube morphology unaffected by ascorbate or EDTA. However, the long-term morphogenetic effect of trace levels of CuSO4 suggests that Cu(II) salts play an important role in pollen-tube development in at least this species ofNicotiana.Abbreviations A475 absorbance at 475 nm - DAPI 4,6-diamidino-2-phenylindole - EDTA ethylene-diamine N,N,N,N-tetraacetic acid - MES 2-(N-morpholino)-ethane sulphonic acid - OG ordinary grade of poly(ethylene glycol) - PEG poly(ethylene glycol) - SP Specially Purified for Biochemistry grade of poly(ethylene glycol)  相似文献   

11.
Zhou A  Xia G 《Plant cell reports》2005,24(5):289-296
To study the effect of -ray treatment on donor and derived somatic hybrids, we carried out -ray donor treatment experiments with a wide range of -ray dosages and asymmetric somatic hybridization between protoplasts of wheat (Triticum aestivum L. Jinan 177) and protoplasts of Haynaldia villosa Schur. treated with different dosages of -rays (40, 60 and 80 Gy, respectively). We first screened the putative hybrids by isozyme analysis, followed by characterization of nuclear and organellar genome composition of the hybrids. Genomic in situ hybridization on mitotic metaphases demonstrated that the donor chromosome elimination in the hybrids increased with increased -ray dosage. Intergenomic chromosome recombination/translocations were observed in the hybrids from different dosages of -rays. PCR amplification of 5S rDNA spacer sequences showed that only some of the regenerated hybrid clones inherited donor 5S rDNA sequences, suggesting that the donor DNA was also eliminated randomly. Restriction fragment length polymorphism analysis using mitochondrion (mt) and chloroplast (cp) gene-specific probes showed that the hybrid calli contained mt genomes of both parents and the cp genome of only one of the parents. Recombinations between parental mt as well as cp genes were found in the hybrid clones. Furthermore, development of the hybrid clones was dependent on the -ray dosage used for the donor treatment. Regenerated plants were only obtained from fusion combinations of low (40 Gy) and intermediate (60 Gy) dose irradiation. The possible role and significance of -rays on the introgression of small segments of donor chromosomes to the receptor is discussed.  相似文献   

12.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

13.
EGTA对Cd胁迫下蓖麻Cd积累和营养元素吸收的影响   总被引:3,自引:0,他引:3  
以‘淄蓖麻5号’蓖麻品种为材料,通过盆栽试验研究了重度Cd土壤污染(100 mg·kg-1)条件下,不同浓度(0、0.5、1.0、2.0 mmol·kg-1)外源螯合剂——乙二醇双(2-氨基乙基醚)四乙酸(EGTA)对蓖麻植株生长、Cd积累和营养元素吸收的影响,探讨外源螯合剂调控Cd污染土壤上植物生长和修复效应。结果显示:(1)在Cd胁迫下,土壤中外源添加0.5~2.0 mmol·kg-1EGTA使蓖麻根系鲜、干重比不添加EGTA对照不同程度降低,但植株总干重没有受到显著影响。(2)外源EGTA能有效促进Cd从蓖麻根部向地上部的转移,2.0 mmol·kg-1的EGTA处理使蓖麻叶片Cd 含量显著增加了41.34倍;与不添加EGTA对照相比,外源EGTA处理蓖麻叶片中Cd积累量随添加EGTA的浓度增加而显著大幅度增加14.0~45.6倍,占相应植株总积累量的36.89%~58.63%,而茎中Cd积累量增加幅度较小,根中Cd积累量则显著降低。(3)Cd胁迫条件下,外源EGTA对蓖麻各器官矿质元素含量的影响不一,EGTA促进K向蓖麻地上部的转运,同时抑制Mg向植株地上部转运;随土壤添加的EGTA浓度提高,蓖麻植株对Ca吸收表现为低促高抑,叶片Zn含量和植株Cu含量逐渐增加,叶片和根系Fe含量及植株各器官Mn含量显著增加。与无Cd胁迫对照相比,EGTA在提高植株Cd积累的同时,降低了根系对K的吸收。研究表明,Cd胁迫显著抑制了蓖麻植株的生长,适宜浓度的外源EGTA对Cd的这种抑制有显著的缓解作用;外源EGTA改变了Cd在蓖麻根、茎、叶中的积累分布情况,提高了Cd从根系向地上部,尤其是向叶片的转移能力,从而强化了蓖麻对Cd污染土壤的修复效率;在采用EGTA强化植物修复Cd污染土壤时,应适量增施K肥以保证植株的正常生理代谢。  相似文献   

14.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

15.
Photoinhibition of Photosystem II in unicellular algae in vivo is accompanied by thylakoid membrane energization and generation of a relatively high pH as demonstrated by 14C-methylamine uptake in intact cells. Presence of ammonium ions in the medium causes extensive swelling of the thylakoid membranes in photoinhibited Chlamydomonas reinhardtii but not in Scenedesmus obliquus wild type and LF-1 mutant cells. The rise in pH and the related thylakoid swelling do not occur at light intensities which do not induce photoinhibition. The rise in pH and membrane energization are not induced by photoinhibitory light in C. reinhardtii mutant cells possessing an active Photosystem II but lacking cytochrome b6/f, plastocyanin or Photosystem I activity and thus being unable to perform cyclic electron flow around Photosystem I. In these mutants the light-induced turnover of the D1 protein of Reaction Center II is considerably reduced. The high light-dependent rise in pH is induced in the LF-1 mutant of Scenedesmus which can not oxidize water but otherwise possesses an active Reaction Center II indicating that PS II-linear electron flow activity and reduction of plastoquinone are not required for this process. Based on these results we conclude that photoinhibition of Photosystem II activates cyclic electron flow around Photosystem I which is responsible for the high membrane energization and pH rise in cells exposed to excessive light intensities.Abbreviations cyt b6/f cytochrome b6/f - Diuron 3-(3,4-dichlorophenyl)-1 dimethyl urea - QB the secondary quinone acceptor of reaction center II - DNP 2,4,Dinitrophenol - FCCP carbonyl cyanide trifluoromethoxy phenylhydrazone - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis  相似文献   

16.
The effects of fertilization [control (C), 200kgNha–1+25kgP ha–1 (LNP) and 400kgNha–1+ 50kgP ha–1 (HNP)] on fine root dynamics were examined in a 40-year-old Larix leptolepis plantation in central Korea. The average fine root biomass during the growing season for C, LNP and HNP was 957, 934 and 814kgha–1, respectively, whereas the fine root production for C, LNP and HNP was 2103, 2131 and 2066kgha–1, respectively. Nitrogen and P inputs into the soil via fine root turnover for C, LNP and HNP were 23.0 and 1.2, 23.3 and 1.2 and 22.6 and 1.2kgha–1, respectively. There were no significant differences in fine root biomass, production and N and P inputs through fine root turnover between the fertilization treatments during the first growing season after fertilization.  相似文献   

17.
The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.  相似文献   

18.
Cotyledonary node explants of Acacia nilotica subspecies indica Brenan, differentiated multiple shoots on Gamborg et al.' s medium (B5, Gamborg et al. 1968) supplemented with cytokinins like N6-benzyladenine, 6-(, -Dimethylallylamino)-purine, kinetin or zeatin. Of the four, BA supported maximum multiple shoot differentiation; the highest average number of shoots (6.3) per expiant was in 1.5 mg/l. The number of shoots was further enhanced by (i) using nodal explants of in vitro regenerated shoots as microcuttings, and (ii) repeated subculture of the original expiants (stumps) on the same medium after excising the shoots. Thus, over seven hundred shoots could be obtained from a single cotyledonary node explant. Individual shoots, when transferred to 2 mg/l indole-3-acetic acid augmented medium organised healthy roots in 100% cultures. Such test tube grown plantlets have been successfully transferred to soil, where they grow well up to eight weeks.Abbreviations 2iP 6-(, -Dimethylallylamino)-purine - AC activated charcoal - B5 Gamborg et al. 's medium with 0.8% agar + 3 % sucrose - BA,N6 benzyladenine - CW coconut water - FAA formalin-aceticacid-alcohol - IAA indole-3-acetic acid - IBA indole-3-butyric acid - Kn kinetin - NAA -naphthaleneacetic acid - NOA -naphthoxyacetic acid  相似文献   

19.
A pot culture experiment and a field experiment were carried out separately to study heavy metal (HM) uptake from soil contaminated with Cu, Zn, Pb and Cd by Elsholtzia splendens Nakai ex F. Maekawa inoculated with arbuscular mycorrhizal (AM) fungi and the potential for phytoremediation. The HM-contaminated soil in the pot experiment was collected from the field experiment site. Two AM fungal inocula, MI containing only one AM fungal strain, Glomus caledonium 90036, and M II consisting of Gigaspora margarita ZJ37, Gigaspora decipens ZJ38, Scutellospora gilmori ZJ39, Acaulospora spp. andGlomus spp., were applied to the soil under unsterilized conditions. In the pot experiment, the plants were harvested after 24 weeks of growth. Mycorrhizal colonization rate, plant dry weight (DW) and P, Cu, Zn, Pb, Cd concentrations were determined. MI-treated plants had higher mycorrhizal colonization rates than MII-treated plants. Both MI and MII increased shoot and root DW, and MII was more effective than MI. In shoots, the highest P, Cu, Zn and Pb concentrations were all observed in the plants treated with MII, while MI decreased Zn and Pb concentrations and increased P but did not alter Cu, and Cd concentrations were not affected by either of two inocula. In roots, MII increased P, Zn, Pb concentrations but did not alter Cu and Cd, and MI did not affect P, Cu, Zn, Pb, Cd concentrations. Cu, Zn, Pb, Cd uptake into shoots and roots all increased in MII-treated plants, while in MI-treated plants, Cu and Zn uptake into shoots and Cu, Zn, Pb, Cd into roots increased but Pb and Cd uptake into shoots decreased. In general, MII was more effective than MI in promoting plant growth and HM uptake. The field experiment following the pot experiment was carried out to investigate the effects of MII under field conditions. The 45-day-old nonmycorrhizal and MII-colonized seedlings of E. splendens were transplanted to HM-contaminated plots and harvested after 5 months. MII-inoculation increased shoot DW and shoot P, Cu, Zn, Pb concentrations significantly but did not alter shoot Cd concentrations, which led to higher uptake of Cu, Zn, Pb, Cd by E. splendens shoots. These results indicate that the AM fungal consortium represented by MII can benefit phytoextraction of HMs and therefore play a role in phytoremediation of HM-contaminated soils.  相似文献   

20.
Experiments in semi-natural conditions were undertaken to assess hemp metal tolerance and its ability to accumulate cadmium, nickel and chromium. Cannabis sativa was grown in two soils, S1 and S2, containing 27, 74, 126 and 82, 115, 139 g g–1 of Cd, Ni and Cr, respectively. After two months from germination and at ripeness, no significant alteration in plant growth or morphology was detected. On the contrary, a high hemp reactivity to heavy metal stress with an increase in phytochelatin and DNA content was observed during development, suggesting the Cannabis sativa ability to avoid cell damage by activating different molecular mechanisms. Metals were preferentially accumulated in the roots and only partially translocated to the above-ground tissues. The mean shoot Cd content was 14 and 66 g g–1 for S1 and S2 soil, respectively. Although not negligible concentrations they were about 100 times lower than those calculated for the hyperaccumulator Thlaspi caerulescens. Similarly Ni uptake was limited if compared with that of the Ni-hyperaccumulator Alyssum murale. Chromium uptake was negligible. As expected on the base of the metal concentration detected in ripe plants, no statistically significant variation in soil metal content was detected after one crop of hemp. Nevertheless, a consistent amount (g) of Cd and Ni is expected to be extracted by 1 ha biomass of hemp (about 10 t) per year and along the time a slow restoration of deeper soil portions can be obtained by its wide root system (at least 0,5 m deep). In addition, the possibilities of growing hemp easily in different climates and using its biomass in non-food industries can make heavy metal contaminated soils productive. This means economical advantage along with a better quality of soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号