首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

2.
Vigna radiata or mungbean belongs to the legume family of plants. Mature mungbean seeds are rich source of dietary proteins for human nutrition. The present study was aimed to analyze the comparative protein profiles of two cotyledon types, Cot and Cot E, prior to and during early time points of shoot morphogenic induction to understand the unique differential regeneration response in these two explant types which was reported earlier. These explants were grown separately in vitro on the shoot induction medium (SIM) containing Gamborg’s B5 basal nutrient composition supplemented with 15 μM N6-benzyladenine. Isolation and characterization of the proteomes from Cot and Cot E explants at different time points, during early events of shoot differentiation, were performed using two dimensional gel electrophoresis following matrix assisted laser desorption-ionization tandem mass spectrometry. A total of 112 differentially identified proteins were classified according to their putative biological function. The differential control of protein synthesis between these explants under control condition, i.e. before in vitro culture, was also noted. In Cot E explants SIM induced prompt acquisition of competence for direct shoot morphogenesis probably through fast phytohormone signaling. Over accumulated proteins in Cot E indicated stimulation of several metabolic and associated pathways earlier than Cot explants. Abundance of stress and defense related proteins in Cot E explants was presumably to cope up with stressful cultural condition. Enhanced accumulation of folding-assisted proteins involved in organogenesis mediated cellular reprogramming in Cot E explants contributed further in rapid and efficient regeneration responsiveness.  相似文献   

3.
Trifolium alexandrinum L. (Egyptian clover) is one of the most important forage crops in the world. Its regeneration in tissue culture has been described in a few reports but the efficiency, accurate time scales and applicability to various genotypes of the described procedures are uncertain. Therefore their suitability for genetic transformation is unclear. In this study, were report new fast procedures for regeneration of Egyptian clover that are applicable to the regeneration of various genotypes (Mescawi-ahaly, Sakha3 and Sakha4). Shoots were regenerated from intact and wounded cotyledons as well as hypocotyls of Mescawi-ahaly on naphthaleneacetic acid/benzyladenine (NAA/BA) and naphthaleneacetic acid/thidiazuron (NAA/TDZ) media. The highest shoot regeneration frequencies were obtained from intact cotyledons on NAA/BA (0.05 mg l−1 NAA combined with 2.0 mg l−1 BA) and NAA/TDZ (0.05 mg l−1 NAA combined with 1.0 mg l−1 TDZ) media (66.2 and 43.1% respectively) compared to 18.4 and 10.1% for wounded cotyledons on NAA/BA and NAA/TDZ respectively. 21.0% shoot regeneration frequency was observed for hypocotyls on NAA/BA (2.0 mg l−1 NAA combined with 0.5 mg l−1 BA) medium but no regeneration was obtained on NAA/TDZ medium. Rooting of the regenerated shoots was induced on indole butyric acid (IBA: 0.24 mg l−1) or NAA (2.0 mg l−1) media where IBA medium supported significantly higher frequencies of rooting as well as survival of the whole plantlets after transfer to soil. However, the rooting and survival frequencies also depended on the type of explant and the medium used for shoot regeneration. The two cultivars Sakha3 and Sakha4 were regenerated using the culture conditions optimized for Mescawi-ahaly with comparable efficiencies, indicating that the described procedure is not genotype dependent. The time scale of whole plantlet regeneration ranged from 7.5 weeks for intact and wounded cotyledons to 10 weeks for hypocotyl explants.  相似文献   

4.
Plant regeneration was achieved through direct and indirect somatic embryogenesis in Eucalyptus camaldulensis. Callus was induced from mature zygotic embryos and from cotyledon explants collected from 10, 15, 25, and 30-day-old seedlings cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of naphthaleneacetic acid (NAA). Maximum callus induction from mature zygotic embryos was obtained on MS basal medium containing 1 mg l−1 NAA. The frequency of callus development varied based on the age of the cotyledon explants 10-day-old explants giving highest percentage on MS basal medium supplemented with 1 mg l−1 NAA. Callus obtained from mature zygotic embryos gave highest frequency of somatic embryogenesis on MS basal medium containing 0.5 mg l−1 benzyladenine (BA) and 0.1 mg l−1 NAA. Separate age wise culture of the calli, obtained from cotyledons of different ages cultured separately, revealed high somatic embryogenic potential on callus from 10-day-old cotyledons. Direct somatic embryogenesis too was obtained from hypocotyl explants without an intervening callus phase on MS basal medium containing 0.5 mg l−1 BA. The effects of abscisic acid (ABA), sucrose, and different strengths of MS medium on somatic embryo maturation and germination were also investigated. Number of mature somatic embryos increased with lower concentrations (0–1 mg l−1) of ABA while no significant differences were observed at higher concentrations (2–5 mg l−1) of ABA. Compared to basal medium containing lower concentrations of sucrose (1%), the MS medium supplemented with higher levels of sucrose (4%) showed significantly lower frequency of mature somatic embryos. Basal medium without any dilution gave the highest number of immature embryos. However, the number of mature embryos was high at higher medium dilutions.  相似文献   

5.
A simple and efficient procedure was developed for in vitro propagation of Solanum aculeatissimum Jacq. using leaf and petiole explants cultured on Murashige and Skoog (MS) medium supplemented with α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). Effects of various plant growth regulators, explant types, carbohydrates, and basal salts on induction of adventitious shoots were also studied. Leaf explants appeared to have better regeneration capacity than petiole explants in the tested media. The highest regeneration frequency (79.33 ± 3.60%) and shoot number (11.33 ± 2.21 shoots per explant) were obtained in leaf explants in MS medium containing 3% sucrose and 0.8% agar, supplemented with 0.1 mg/l NAA and 2.0 mg/l BA, whereas petiole explants were more responsive to 0.1 mg/l NAA and 1.0 mg/l thiadiazuron. Developed shoots rooted best on MS medium with 1.0 mg/l indole acetic acid (IAA), producing 18.33 ± 2.51 roots per shoot. Histological investigation showed that the shoot buds originated mainly from epidermal cells of wounded tissues, without callus formation. The regenerated plantlets were successfully acclimatized in a greenhouse, where over 90% developed into morphologically normal and fertile plants. Results of flow cytometry analysis on S. aculeatissimum indicated no variation in the ploidy levels of plants regenerated via direct shoot formation and showed almost the same phenotype as that of mother plants. This adventitious shoot regeneration method may be used for large-scale shoot propagation and genetic engineering studies of S. aculeatissimum.  相似文献   

6.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

7.
A unique differential regeneration response of the two cotyledon types, ‘Cot E’ (attached to the embryonal axis) and ‘Cot’ was reported earlier in Vigna radiata. The histological study revealed that there is a temporal difference in meristemoid development between ‘Cot E’ and ‘Cot’. The meristematic tissue differentiate directly from the epidermal/sub-epidermal layers of ‘Cot E’, whereas, callus mediated differentiation occurs in the ‘Cot’. It was observed that the frequency of shoot differentiation in ‘Cot’ explants increased distinctively when 20 mg l?1 of β-Arabinogalactan (β-ABG) was supplemented in the medium and an altered mode of regeneration was noted like that of ‘Cot E’. While, under the same condition, the regeneration frequency decreased substantially in ‘Cot E’ and the explants became necrotic. The results indicate that the de-embryonated ‘Cot E’ grown in vitro contain more endogenous arabinogalactan proteins (AGPs) than ‘Cot’, presumably due to the wound formation during excision, as AGP is wound inducible. And perhaps due to the feed back inhibition, addition of β-ABG to the differentiation-inducing medium either resulted in necrosis of ‘Cot E’ or sharp decrease in regeneration efficiency. It was postulated that glycosylation of cytosolic peptides occurs when β-ABG was supplemented externally in the culture medium and resulted in AGP synthesis. Presence of AGP in the cotyledonary tissues was demonstrated through gel electrophoretic study and also verified by histochemical localization in these explant types. This is the first report showing presence of AGP in ‘V. radiata’. The dose dependent phytohormone like effect of β-ABG suggests its role as precursor for a novel ‘growth regulator’, AGP.  相似文献   

8.
A method for in vitro regeneration of Searsia dentata from nodal and shoot tip explants derived from mature trees is outlined. Nodal explants produced multiple shoots from the axis when cultured on Murashige and Skoog (MS) medium containing 3% sucrose supplemented with 0, 5, 7.5, 10, or 12.5 μM N 6-benzyladenine (BA). An average of 5.3 shoots was obtained from nodal explants on 10 μM BA. For shoot tip explants, however, supplementation of α-naphthaleneacetic acid (NAA) with BA favored a caulogenic response. A maximum of 6.1 shoots were produced per shoot tip explant on MS containing 7.5 μM BA plus 5.0 μM NAA. The in vitro-regenerated shoots produced roots when transferred to full-strength MS medium containing 3% sucrose and 10 μM indole-3-butyric acid (IBA). The developed plantlets were transferred initially to a mist house. After an initial acclimatization period of 3–4 mo, plantlets were shifted to the greenhouse where they thrived for 9 mo. The standardized protocol for mass propagation of S. dentata should eliminate the dependence on natural stands of plants for traditional medicinal purposes, and will also serve as a means of conservation as the species is heavily overexploited.  相似文献   

9.
Differential regeneration response in two cotyledon types (Cot and Cot E) of Vigna radiata was reported earlier. The Cot (one cotyledon) is easily detachable from the germinating embryonal axis, whereas, Cot E (the other cotyledon) remains firmly attached during seed germination or after imbibition. Shoots differentiated directly from the Cot E under the induction of in vitro differentiation, while, under the same milieu, shoot differentiation was preceded by callus differentiation from Cot. In this study, we present comparative analyses of protein profiles from these two explant types recorded at different point of time during induction of differentiation. Cot E always contained higher amounts of soluble protein than the Cot. Likewise, higher de novo protein synthesis was noted in Cot E than in Cot as revealed by 35S methionine labeled study. Two polypeptides of ~37 and 84 kD disappeared earlier from Cot E than Cot and is presumed to be linked with shoot induction. Two marker proteins of ~88 and 158 kD synthesized during shoot differentiation were apparent. It was observed that the labeled protein synthesis initiated within 3h in Cot E under in vitro condition, while, no labeled protein was detected from Cot even at 12h. Irrespective of the mode of differentiation, a large amount of protein was hydrolyzed during the process of differentiation. However, in case of Cot, the process was delayed by a day than Cot E. In all probability, this is an indication of delayed cytokinin induced rejuvenation of Cot. Temporal difference in protein profile was also evident in these two explant types during in vitro differentiation. Yet, three major groups of proteins were consistently present in both the explants. The biochemical differences recorded between these two explants during induction of in vitro differentiation reflects the temporal difference in gene expression. Perhaps Cot E has the distinctiveness due to the temporal differences in certain key gene expression and proved its greater suitability over Cot for shoot regeneration purposes.  相似文献   

10.
A protocol for plantlet regeneration through shoot formation was developed for the neotropical shrub Brunfelsia calycina. This shrub is unique in its change in flower color from dark purple to white. Explants from young and mature leaves were incubated on MS medium (pH 5.7, 30 g/l sucrose, 7.5 g/l agar) with various combinations of Indole-3-acetic acid (IAA) and 6-Benzyladenine (BA) under a 16 h photoperiod at a constant temperature of 25°C. Shoot emergence was best at 4.44 μM BA and 2.85 μM IAA for young leaf explants, and at 8.88 μM BA, 2.85 μM IAA for mature leaf explants. When shoots were transferred to MS medium supplemented with 1.23–2.46 μM indole butrytic acid (IBA), they developed roots.  相似文献   

11.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

12.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

13.
An indirect in vitro plant regeneration protocol for Vanilla planifolia has been established. Juvenile leaf and nodal segments from V. planifolia were used as explants to initiate callus. Nodal explants showed better callus initiation than juvenile leaf explants, with 35.0% of explants forming callus when cultured on Murashige and Skoog (MS) basal medium supplemented with 2.0 mg/l 1-naphthylacetic acid (NAA) and 1.0 mg/l 6-benzyladenine (BA). Almost 10.0% of juvenile leaf explants were induced to form callus on the MS basal medium containing 2.0 mg/l NAA and 2.0 mg/l BA, whereas no callus formed in the presence of any concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and BA. After 8 weeks, callus generated was transferred to MS basal medium containing 1.0 mg/l BA and 0.5 mg/l NAA. A mean number of 4.2 shoots per callus was produced on this medium, with a mean length of 3.8 cm after 8 weeks of culture. Roots formed on 88.3% of plantlets when they were cultured on MS medium supplemented with 1.0 mg/l NAA, with a mean length of 4.4 cm after 4 weeks of culture. Of the rooted plantlets, 90.0% survived acclimatisation and were making new growth after 4 weeks.  相似文献   

14.
Summary Cotyledons of mature seeds of Vigna radiata were found to be variable in their response to N 6-benzytadenine, kinet in and zeatin. The two cotyledons of a seed were designated as CE and C; where CE referred to the cotyledon that remained closely attached to the embryonal axis, and the other more loosely attached cotyledon was referred to as C. Shoots formed from the proximal end of both explants in all nine cultivars studied. Shoot regeneration was faster and regeneration efficiency was higher in CE explants than in C explants in these cultivars. BA was found to be the most suitable cytokinin for both multiple shoot induction and regeneration.Abbreviations BA N6- benzyladenine - Cv cultivar - KIN kinetin - NAA naphthalene acetic acid - RE regeneration efficiency - ZEA zeatin  相似文献   

15.
The aromatic medicinal plant Salvia stenophylla contains α-bisabolol, making this plant an important contributor to the aromatherapy and cosmetic industries in South Africa. Due to its commercial importance, the cultivation of this plant using an in vitro system was considered. Firstly, seedlings were raised in vitro after breaking dormancy with light, smoke-water or chemical scarification treatments. Germination improved when seeds were smoke-treated or soaked in 70% (v/v) H2SO4. Vigorous plantlet regeneration was achieved when seedling explants were cultured on Murashige and Skoog (1962) medium with 5.7 μM IAA and 8.9 μM BA. The potential regeneration capacity for this protocol was estimated and over 1,000 plantlets can be produced from a single shoot (6.67 cm with 4–6 nodes) over a period of 3 months. Plants rooted easily regardless of their growth medium. This was followed by their successful rapid establishment and normal growth out of culture (75%). Finally, the volatile compounds in in vitro plants were compared to ex vitro plants via headspace solid phase microextraction linked to gas chromatography–mass spectrometry. The chemical complexity of microplants was similar to wild plants with in vitro plants continuing to produce α-bisabolol (21%) at high levels.  相似文献   

16.
In vitro propagation protocol for Lilium oxypetalum, a high altitude Himalayan endemic lily, has been developed. Effect of explant types (i.e., callus and in vitro bulblet scales) and sucrose concentration [0–6.0% (w/v)] on in vitro bulblet regeneration of L. oxypetalum was tested in previously optimized Murashige and Skoog basal medium supplemented with 2.0 μM 6-benzyladenine and 0.1 μM α-naphthaleneacetic acid. Callus explants produced significantly (P < 0.01) higher number of bulblets per explant than bulblet scale explants. Of the different concentrations of sucrose tested, 4.5% (w/v) sucrose showed significantly (P < 0.01) higher percentage regeneration (i.e., 70.8 ± 4.2 and 79.2 ± 4.2% regeneration on callus and bulblet scale explants, respectively), and produced higher number of bulblets per explant (i.e., 9.0 ± 0.4 and 5.4 ± 0.5 bulblets on callus and bulblet scale explants, respectively). Regenerated bulblets developed 2–3 leaves when subcultured for 4 weeks and were subsequently transferred ex vitro with a survival rate of 66.7% after 6 weeks. Leaves of the survived plantlets became dry after growing ex vitro for 10 weeks, amongst which 86.4% re-sprouted after remaining dormant for 5–6 weeks and produced 1.5 bulblets per explant. Findings of the present study hold promise for efficiently multiplying the target species in view of its potential economic and conservation significance.  相似文献   

17.
A new technique to regenerate caper plants (Capparis spinosa L. subsp. rupestris) starting from flower explant is reported. In vitro plant regeneration was attempted using stigma, anthers and unfertilized ovules of unopened flowers collected in the field. Plant regeneration was achieved from unfertilized ovules on MS medium supplemented with 88 mM sucrose and 13 μM 6-benzyladenine (BA). New individuals obtained from unfertilized ovules were used as source material for micropropagation and multiple shoots were obtained on MS medium supplemented with the adeninic cytokinin BA and the auxin indole-3-butyric acid (IBA). Explants obtained in micropropagation step were used for rooting step under several treatments. The best results (100% of rooted explants) were obtained when explants were dipped for 10 min in 50 μM IBA solution and successively maintained in growth regulator free medium. New plants were vigorous, of good quality and presented phenotypic characters similar to mother plants. Furthermore genetic stability of regenerants was verified through flow cytometric analysis and two different DNA-based techniques.  相似文献   

18.
The effects of a two-stage pretreatment of seedlings on the subsequent shoot regeneration capacity were investigated. Pretreated seedlings were obtained by germinating seeds on three different germination media and then further culturing on six different growth media. Lamina and petiole explants of two sugar beet (Beta vulgaris L.) breeding lines were then excised from the pretreated seedlings and cultured on five different shoot regeneration media. In both breeding lines, petiole explants produced significantly more shoots than lamina explants with higher frequencies of organogenic capacities; petiole explants of the lines M1195 and ELK345 produced a mean of 2.1 and 2.7 shoots per explant while their lamina explants produced 1.5 and 2.2 shoots per explant, respectively. A genotypic variation was evident as the line ELK345 was more productive for shoot development from both types of explants. In overall comparisons of different germination, growth and regeneration media, germination medium was most effective when supplemented with 0.5 mg/l 6-benzyladenine (BA) while both growth and regeneration media were most productive when contained a combination of 0.25 mg/l BA and 0.10 mg/l indole-3-butyric acid (IBA). Of all the treatments tested, the highest mean number of shoots per explant (8.3 shoots) and frequency of organogenic explants (75.6%) were obtained on regeneration medium supplemented with 0.25 mg/l BA and 0.10 mg/l IBA when petiole explants of the line ELK345 were excised from the seedlings that had been germinated on medium containing 0.5 mg/l BA followed by further growth on medium containing 0.25 mg/l BA and 0.10 mg/l IBA.  相似文献   

19.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

20.
The regeneration of plants via somatic embryogenesis liquid shake culture of embryogenic calluses was achieved in Vigna mungo (L.) Hepper (blackgram). The production of embryogenic callus was induced by seeding primary leaf explants of V. mungo onto Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962) medium supplemented (optimally) with 1.5 mg/l 2,4-dichloro-phenoxyacetic acid. The embryogenic callus was then transferred to liquid MS medium supplemented (optimally) with 0.25 mg/l 2,4-dichloro-phenoxyacetic acid. Globular, heart-shaped, and torpedo-shaped embryos developed in liquid culture. The optimal carbohydrate source for production of somatic embryos was 3% sucrose (compared to glucose, fructose, and maltose). l-Glutamine (20 mg/l) stimulated the production of all somatic embryo stages significantly. Torpedo-shaped embryos were transferred to MS (Physiol Plant 15:473–497, 1962) liquid medium containing 0.5 mg/l abscisic acid to induce the maturation of cotyledonary-stage embryos. Cotyledonary-stage embryos were transferred to 1/2-MS semi-solid basal medium for embryo conversion. Approximately 1–1.5% of the embryos developed into plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号