共查询到20条相似文献,搜索用时 0 毫秒
1.
Mario Juhas Jan Roelof van der Meer Muriel Gaillard Rosalind M. Harding Derek W. Hood & Derrick W. Crook 《FEMS microbiology reviews》2009,33(2):376-393
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. 相似文献
2.
3.
4.
Gladieux P Guérin F Giraud T Caffier V Lemaire C Parisi L Didelot F LE Cam B 《Molecular ecology》2011,20(21):4521-4532
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a 'magic trait'. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years. 相似文献
5.
DJ Rankin LA Turner JA Heinemann SP Brown 《Proceedings. Biological sciences / The Royal Society》2012,279(1743):3706-3715
Bacterial genomes commonly contain 'addiction' gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin-antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive 'rock-paper-scissors' dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes. 相似文献
6.
Scott M. Duke-Sylvester Roman Biek Leslie A. Real 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1614)
RNA viruses account for numerous emerging and perennial infectious diseases, and are characterized by rapid rates of molecular evolution. The ecological dynamics of most emerging RNA viruses are still poorly understood and difficult to ascertain. The availability of genome sequence data for many RNA viruses, in principle, could be used to infer ecological dynamics if changes in population numbers produced a lasting signature within the pattern of genome evolution. As a result, the rapidly emerging phylogeographic structure of a pathogen, shaped by the rise and fall in the number of infections and their spatial distribution, could be used as a surrogate for direct ecological assessments. Based on rabies virus as our example, we use a model combining ecological and evolutionary processes to test whether variation in the rate of host movement results in predictive diagnostic patterns of pathogen genetic structure. We identify several linearizable relationships between host dispersal rate and measures of phylogenetic structure suggesting genetic information can be used to directly infer ecological process. We also find phylogenetic structure may be more revealing than demography for certain ecological processes. Our approach extends the reach of current analytic frameworks for infectious disease dynamics by linking phylogeography back to underlying ecological processes. 相似文献
7.
Jianchao Ying Huifeng Wang Bokan Bao Ying Zhang Jinfang Zhang Cheng Zhang Aifang Li Junwan Lu Peizhen Li Jun Ying Qi Liu Teng Xu Huiguang Yi Jinsong Li Li Zhou Tieli Zhou Zuyuan Xu Liyan Ni Qiyu Bao 《International journal of biological sciences》2015,11(1):11-21
The homocysteine methyltransferase encoded by mmuM is widely distributed among microbial organisms. It is the key enzyme that catalyzes the last step in methionine biosynthesis and plays an important role in the metabolism process. It also enables the microbial organisms to tolerate high concentrations of selenium in the environment. In this research, 533 mmuM gene sequences covering 70 genera of the bacteria were selected from GenBank database. The distribution frequency of mmuM is different in the investigated genera of bacteria. The mapping results of 160 mmuM reference sequences showed that the mmuM genes were found in 7 species of pathogen genomes sequenced in this work. The polymerase chain reaction products of one mmuM genotype ( as the reference) were sequenced and the sequencing results confirmed the mapping results. Furthermore, 144 representative sequences were chosen for phylogenetic analysis and some mmuM genes from totally different genera (such as the genes between Escherichia and Klebsiella and between Enterobacter and Kosakonia) shared closer phylogenetic relationship than those from the same genus. Comparative genomic analysis of the mmuM encoding regions on plasmids and bacterial chromosomes showed that pKF3-140 and pIP1206 plasmids shared a 21 kb homology region and a 4.9 kb fragment in this region was in fact originated from the Escherichia coli chromosome. These results further suggested that mmuM gene did go through the gene horizontal transfer among different species or genera of bacteria. High-throughput sequencing combined with comparative genomics analysis would explore distribution and dissemination of the mmuM gene among bacteria and its evolution at a molecular level. NC_013951相似文献
8.
Auxilien S Rasmussen A Rose S Brochier-Armanet C Husson C Fourmy D Grosjean H Douthwaite S 《RNA (New York, N.Y.)》2011,17(1):45-53
Methyltransferase enzymes that use S-adenosylmethionine as a cofactor to catalyze 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, but are restricted to the Thermococcales and Nanoarchaeota groups amongst the Archaea. The RNA m(5)U methyltransferases appear to have arisen in Bacteria and were then dispersed by horizontal transfer of an rlmD-type gene to the Archaea and Eukaryota. The bacterium Escherichia coli has three gene paralogs and these encode the methyltransferases TrmA that targets m(5)U54 in tRNAs, RlmC (formerly RumB) that modifies m(5)U747 in 23S rRNA, and RlmD (formerly RumA) the archetypical enzyme that is specific for m(5)U1939 in 23S rRNA. The thermococcale archaeon Pyrococcus abyssi possesses two m(5)U methyltransferase paralogs, PAB0719 and PAB0760, with sequences most closely related to the bacterial RlmD. Surprisingly, however, neither of the two P. abyssi enzymes displays RlmD-like activity in vitro. PAB0719 acts in a TrmA-like manner to catalyze m(5)U54 methylation in P. abyssi tRNAs, and here we show that PAB0760 possesses RlmC-like activity and specifically methylates the nucleotide equivalent to U747 in P. abyssi 23S rRNA. The findings indicate that PAB0719 and PAB0760 originated as RlmD-type m(5)U methyltransferases and underwent changes in target specificity after their acquisition by a Thermococcales ancestor from a bacterial source. 相似文献
9.
Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally. 相似文献
10.
Art Winfree's scientific legacy has been particularly important to our laboratory whose major goal is to understand the mechanisms of ventricular fibrillation (VF). Here, we take an integrative approach to review recent studies on the manner in which nonlinear electrical waves organize to result in VF. We describe the contribution of specific potassium channel proteins and of the myocardial fiber structure to such organization. The discussion centers on data derived from a model of stable VF in the Langendorff-perfused guinea pig heart that demonstrates distinct patterns of organization in the left (LV) and right (RV) ventricles. Analysis of optical mapping data reveals that VF excitation frequencies are distributed throughout the ventricles in clearly demarcated domains. The highest frequency domains are found on the anterior wall of the LV at a location where sustained reentrant activity is present. The optical data suggest that a high frequency rotor that remains stationary in the LV is the mechanism that sustains VF in this model. Computer simulations predict that the inward rectifying potassium current (IK1) is an essential determinant of rotor stability and frequency, and patch-clamp results strongly suggest that the outward component of IK1 of cells in the LV is significantly larger than in the RV. Additional computer simulations and analytical procedures predict that the filaments of the reentrant activity (scroll waves) adopt a non-random configuration depending on fiber organization within the ventricular wall. Using the minimal principle we have concluded that filaments align with the trajectory of least resistance (i.e. the geodesic) between their endpoints. Overall, the data discussed have opened new and potentially exciting avenues of research on the possible role played by inward rectifier channels in the mechanism of VF, as well as the organization of its reentrant sources in three-dimensional cardiac muscle. Such an integrative approach may lead us toward an understanding of the molecular and structural basis of VF and hopefully to new preventative approaches. 相似文献
11.
The mechanisms of stress-induced mutagenesis in prokaryotes and realization of reserved (preaccumulated) genetic variation in eukaryotes are considered. In prokaryotes, replication becomes error-prone in stress because of the induction of the SOS response and the inactivation of the mismatch repair system; stress also increases the transposition rate and the efficiency of interspecific gene transfer. In eukaryotes, chaperone HSP90, which restores the native folding of mutant proteins (e.g., signal transduction and morphogenetic proteins) in normal conditions, fails to do so in stress, which leads to abrupt expression of multiple mutations earlier reserved in the corresponding genes. The role of these mechanisms in the evolution of prokaryotes and eukaryotes is discussed. 相似文献
12.
13.
A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster
Atsushi Iguchi Sunao Iyoda Taisei Kikuchi Yoshitoshi Ogura Keisuke Katsura Makoto Ohnishi Tetsuya Hayashi Nicholas R. Thomson 《DNA research》2015,22(1):101-107
The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli O serogroups. By comparing these sequences, we identified 161 well-defined O-AGCs. Based on the wzx/wzy or wzm/wzt gene sequences, in addition to 145 singletons, 37 serogroups were placed into 16 groups. Furthermore, phylogenetic analysis of all the E. coli O-serogroup reference strains revealed that the nearly one-quarter of the 184 serogroups were found in the ST10 lineage, which may have a unique genetic background allowing a more successful exchange of O-AGCs. Our data provide a complete view of the genetic diversity of O-AGCs in E. coli showing a stronger association between host phylogenetic lineage and O-serogroup diversification than previously recognized. These data will be a valuable basis for developing a systematic molecular O-typing scheme that will allow traditional typing approaches to be linked to genomic exploration of E. coli diversity. 相似文献
14.
Anders Norman Lars H. Hansen S?ren J. S?rensen 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1527):2275-2289
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual’ can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as ‘backbone modules’ to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of ‘accessory elements’ that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes’. 相似文献
15.
In this paper, the carbonic anhydrase II (CA II) enzyme active site is modeled using ab initio calculations and molecular dynamics simulations to examine a number of important issues for the enzyme function. It is found that the Zn2+ ion is dominantly tetrahedrally coordinated, which agrees with X-ray crystallographic studies. However, a transient five-fold coordination with an extra water molecule is also found. Studies of His64 conformations upon a change in the protonation states of the Zn-bound water and the His64 residue also confirm the results of an X-ray study which suggest that the His64 conformation is quite flexible. However, the degree of water solvation is found to affect this behavior. Water bridge formation between the Zn-bound water and the His64 residue was found to involve a free energy barrier of 2–3 kcal/mol and an average lifetime of several picoseconds, which supports the concept of a proton transfer mechanism through such a bridge. Mutations of various residues around the active site provide further insight into the corresponding experimental results and, in fact, suggest an important role for the solvent water molecules in the CA II catalytic mechanism. Proteins 33:119–134, 1998. © 1998 Wiley-Liss, Inc. 相似文献
16.
《Critical reviews in biochemistry and molecular biology》2013,48(4):296-317
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell. 相似文献
17.
Coenzyme A biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics 总被引:5,自引:0,他引:5
Genschel U 《Molecular biology and evolution》2004,21(7):1242-1251
Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound. 相似文献
18.
Large-scale economically-driven encroachments into tropical rainforest environments are major factors for disease emergence. A better understanding of the process of disease emergence can be best derived from a multilevel, transdisciplinary ecosystem approach that analyzes health data in its biological, ecological, social, and cultural context. Multiple methods, including ethnographic techniques, are recommended for such an approach. The value of this approach and methodology is presented in this article through a rapid health assessment case study of an unexplained fatal syndrome that occurred among the Secoya peoples of the Ecuadorian Amazon in 1999. This type of study is significant given the lack of health data for indigenous populations at risk of disease emergence. Moreover, indigenous cultures share a long-term, close relationship to the land and each other, which makes information about changes in their environment and health patterns highly salient to them. This local knowledge is of strategic value to researchers working on issues of environmental change and disease emergence. 相似文献
19.
20.