首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three controlled‐release personal‐use pulp fabric impregnated insect repellent formulations of 5% N, N‐diethyl‐3‐methylbenzamide (DEET), and 10% and 15% neem oils were evaluated in an environmental chamber on volunteers for their repellent efficacy against three mosquito species, Culex pipiens pallens, Aedes aegypti and Ochlerotatus togoi. The 5% DEET formulation showed significant repellency in pulp fabric (5 mm in width) against Culex pipiens pallens and Aedes aegypti (P < 0.05), providing an average repellency of 88.0%, 66.3%, and 46.8% of Cx. pipiens pallens, Ae. Aegypti and O. togoi bites, respectively, during the 6 hours of exposure period. Against night‐biting mosquitoes Cx. pipiens pallens, the DEET formulation provided mostly complete protection for at least 4 hours after the application. In pulp fabric of 10 mm in width, the 5% deet formulation showed significantly the highest repellency among the repellents against O. togoi (P<0.05), providing an average repellency of 52.3% during the 6 hours of exposure period. However, the pulp fabrics treated with 10% and 15% neem oil were less effective than 5% DEET against three mosquito species. This study demonstrated the potential of 5% DEET as pulp fabric repellent against both day‐ and night‐biting mosquitoes.  相似文献   

2.
The present study was conducted to determine whether imidacloprid can impair the avoidance behaviour of the mosquito Stegomyia aegypti. Laboratory investigations using a T‐maze apparatus showed that St. aegypti mosquitoes present long term avoidance behaviour when they are exposed to repetitive trials with lemon oil and DEET. The present study tested the effect of a sublethal dose of imidacloprid on the avoidance behaviour of St. aegypti mosquitoes over a 48 h period. Data suggest that 0.5 ng of imidacloprid/mosquito reduces the avoidance behaviour of mosquitoes exposed to lemon oil, on the first day of exposure, after the second trial; whereas imidacloprid affected DEET repellency only the first day of exposure, after the second trial. Imidacloprid was toxic against St. aegypti mosquitoes, and at sublethal doses was able to impair the repellency induced by lemon oil and DEET. The present data were consistent with the finding that St. aegypti mosquitoes exhibit long term avoidance behaviour, and treatment of mosquitoes with a sublethal dose of imidacloprid under DEET application can affect the repellency of DEET against St. aegypti.  相似文献   

3.
Two new field bioassay methods were developed to compare the repellent activity of BioUD® (containing 7.75% 2‐undecanone), 98.1% DEET and 0.5% permethrin against natural populations of nymphal Amblyomma americanum (L.) (Acari: Ixodidae). In a cloth sheet assay, pieces of material measuring 41 × 58 cm, separately treated with one of the test materials or the appropriate solvent carrier, were placed at random on the ground and baited with dry ice for 1 h. Mean numbers of ticks on repellent‐treated sheets were significantly lower than on control sheets. There was no significant difference in the number of ticks collected between sheets treated with BioUD® and those treated with DEET. However, significantly fewer ticks were found on sheets treated with BioUD® or DEET than on permethrin‐treated sheets. In a sock test, over‐the‐calf tube socks were treated with one of the test materials or the appropriate solvent carrier. Human volunteers wore a repellent‐treated and a corresponding carrier‐treated sock on either leg and walked randomly over an area of approximately 4000 m2 for 15 min. Significantly fewer ticks were collected from socks treated with BioUD® or DEET than from socks treated with the carrier and there was no significant difference in repellency between these two agents. No difference in the mean number of ticks collected was found between permethrin‐treated and corresponding carrier‐treated socks. To examine the mechanism of repellency of BioUD®, a four‐choice olfactometer was used to assess spatial repellency against adult A. americanum. As expected in the absence of a repellent, when all choices were represented by water‐treated filter paper, ticks were equally distributed among the choices. When one choice consisted of BioUD®‐treated filter paper and the remaining choices of water‐treated paper, the distribution of ticks on the repellent‐treated paper was significantly lower than might be expected to occur by chance, suggesting that repellency is at least partly achieved by an olfactory mechanism.  相似文献   

4.
Spatial repellents are an essential tool for personal protection against mosquitoes that bite and transmit disease pathogens to humans. Current repellent screening methods, such as olfactometers and alternative choice tests, are complex systems that require a relatively large quantity of compound (mg). The present study validates a high‐throughput spatial repellent screening method using a glass tube that has the ends covered with netting, in addition to treated filters and plastic end caps. The apparatus occupies relatively little space, is easy to decontaminate, and requires small amounts of compound (μg). In a horizontal tube orientation, DEET (N,N‐diethyl‐meta‐toluamide), citronella oil and IR3535 had 1 h half repellent concentration (EC50) values of 32, 32 and 298 μg/cm2, respectively, against the Orlando strain of Aedes aegypti (L.) (Diptera: Culicidae). Vertical tube orientation increased EC50 values by approximately two‐fold, except IR3535, which remained essentially unchanged. Transfluthrin showed concentration‐dependent spatial repellency (1 h EC50 = 0.5 μg/cm2) without any knockdown, although only in vertical tubes. Transfluthrin showed 50% knockdown in 1 h at 0.5 μg/cm2 and 50% mortality at 0.15 μg/cm2 in horizontal tubes. In conclusion, this high‐throughput screening method is useful for assessing vapour toxicity and the spatial repellency of candidate molecules prior to semi‐field and field studies.  相似文献   

5.
Mosquito repellents are used around the globe to protect against nuisance biting and disease‐transmitting mosquitoes. Recently, there has been renewed interest in the development of repellents as tools to control the transmission of mosquito‐borne diseases. We present a new bioassay for the accurate assessment of candidate repellent compounds, using a synthetic odour that mimics the odour blend released by human skin. Using DEET (N,N‐diethyl‐meta‐toluamide) and PMD (p‐menthane‐3,8‐diol) as reference compounds, nine candidate repellents were tested, of which five showed significant repellency to the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). These included: 2‐nonanone; 6‐methyl‐5‐hepten‐2‐one; linalool; δ‐decalactone, and δ‐undecalactone. The lactones were also tested on the yellow fever mosquito Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae), against which they showed similar degrees of repellency. We conclude that the lactones are highly promising repellents, particularly because these compounds are pleasant‐smelling, natural products that are also present in human food sources.  相似文献   

6.
There is a broad understanding of the influence of environmental factors on various aspects of normal mosquito behavior. How these external factors influence responses to repellent compounds is far less clear. The objective of this study was to investigate the effect of different daytime periods combining the normal circadian activity of a laboratory colony of Aedes aegypti (L.) with behavioral responses of mosquitoes exposed to three different compounds possessing repellent properties. Using an excito-repellency test chamber with different test designs (contact irritancy + repellency and noncontact repellency), female mosquitoes were exposed to each chemical or matching blank control during four different 3-h time intervals beginning 0600 to 1800?h. Mosquitoes showed more significant avoidance responses (escape movement away from the chemical) when exposed to either DEET or hairy basil during the afternoon periods. With deltamethrin, there was no significant difference in repellent escape movement during any period of testing. Escape activity with deltamethrin was significantly greater during all diurnal periods in contact tests compared to DEET and hairy basil. From this study, it was shown that time of diurnal testing can significantly influence behavioral responses of Ae. aegypti exposed to chemical-based repellents. Therefore, the assessment of chemicals (toxins, repellents, attractants) and must carefully consider time-of-test as a potential confounding factor during evaluation and comparisons.  相似文献   

7.
The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock‐down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.  相似文献   

8.
采用同时蒸馏萃取及硅胶柱层析法从猫薄荷Nepeta cataria 植物中提取、分离制得驱蚊有效成分假荆芥内酯,并采用个体涂肤有效保护时间测定法及风洞空间驱避效果测试法, 对假荆芥内酯与避蚊胺(DEET)的驱蚊效果进行了对比试验。结果表明,400 g新鲜猫薄荷植株可制得精油5.6 g,其中假荆芥内酯含量为55%,Z,E-假荆芥内酯32%, E,Z-假荆芥内酯23%。室内标准药效评价结果表明,DEET对白纹伊蚊Aedes albopictus 及淡色库蚊Culex pipiens pallens有效保护时间分别为9.6±0.2 h与11.5±1.5 h,而假荆芥内酯仅为2.2±0.2 h与4.3±0.8 h。风洞定向行为测试结果表明,假荆芥内酯单独作用时,对蚊虫有微弱的引诱效果,但在人体气味及二氯甲烷L-乳酸存在时,可显著抑制这些引诱物对蚊虫的引诱效果,是优良的空间驱避剂;DEET对蚊虫无明显的引诱作用,对二氯甲烷L-乳酸溶液引诱剂也无明显的抑制效果,但可显著增强人体气味对蚊虫的引诱性。  相似文献   

9.
BackgroundVolatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial.Methodology/Principal findingsHere, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency.Conclusions/SignificanceThese results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors.  相似文献   

10.
The lone star tick, Amblyomma americanum, is a vector of several important human and animal diseases. This tick species has rapidly expanded in its geographic distribution, and its aggressive behavior has increased the risk of tick-borne diseases in these new areas. Repellents are recommended by the Centers for Disease Control and Prevention (CDC) for protection against tick bites. DEET is the most common repellent, but public concerns over its safety have increased the need for alternative safe and efficacious tick repellents. Several naturally derived animal compounds have been tested against other species of ticks or other arthropod pests, but not against A. americanum. Based on EC50 values obtained using a vertical paper bioassay, decylamine and MT-710 (a 2-tridecanone formulation) were found to be as repellent as DEET. Those two substances along with 2-tridecanone were also found to be as repellent as DEET when their EC95 values were compared. Lone star ticks were more susceptible to the toxic effects of DEET in glass vial assays than all of the ant-derived defensive compounds/formulations. These results suggest that the ant-derived defensive compounds are likely more effective lone star tick repellents than DEET, but they are not as toxic as DEET towards the ticks. The suitability of these compounds for use as personal repellents, as well as at the landscape scale, should be explored.  相似文献   

11.
《Fly》2013,7(1):45-51
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.  相似文献   

12.
The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils.  相似文献   

13.
First report of the repellency of 2-tridecanone against ticks   总被引:1,自引:0,他引:1  
2‐Tridecanone and 2‐undecanone are both found naturally in the trichomes of wild tomato plants and are important in plant resistance to herbivory. 2‐Undecanone is the U.S. Environmental Protection Agency (EPA)‐registered active ingredient in the commercially available arthropod repellent, BioUD®. The goal of this study was to examine the tick repellency of 2‐tridecanone. Two‐choice bioassays were conducted using 8% 2‐tridecanone vs. the repellent carrier (absolute ethanol) and compared with two‐choice studies using 8% 2‐undecanone vs. absolute ethanol. Unfed, host‐seeking adult (mixed sex) Amblyomma americanum (L.) (Acari: Ixodidae) and Dermacentor variabilis Say (Acari: Ixodidae) were used to evaluate repellency and time to repellent failure at room temperature. The present study shows in filter paper assays (0.63 mg test compound/cm2) that 2‐tridecanone was 87% repellent to A. americanum at 12 h after application, but had no statistically significant repellency at 15 h and 24 h, and was 72% repellent to D. variabilis at 15 h, but had no statistically significant repellency at 24 h. By contrast, 2‐undecanone was 74% and 75% repellent to A. americanum and D. variabilis, respectively, at 2 h after application, but no statistically significant repellency was noted at 2.5 h and 3 h. In two‐choice assays on cheesecloth, 2‐tridecanone at 0.25 mg/cm2 was 85% repellent to A. americanum 6 h after application, demonstrating its potential use as an arthropod repellent that can be used on clothing without the need for formulation. No statistically significant repellency was found at 9 h or 12 h. The potential use of 2‐tridecanone as a tick repellent is discussed.  相似文献   

14.
Methyl N,N-dimethyl anthranilate (MDA), ethyl anthranilate (EA) and butyl anthranilate (BA) were previously shown to repel Aedes aegypti mosquitoes from landing on human skin. However, the effect of these compounds on the orientation of flying mosquitoes in a choice situation and their effect on mosquito oviposition are not yet known. Here, we used a modified Y-tube olfactometer to test the effect of these compounds on the orientation of Aedes aegypti flying towards skin odor (human fingers), and we tested their effect on Aedes aegypti oviposition choice in a cage assay. In both behavioral situations we compared the effect to the well-documented repellent N,N-diethyl-meta-toluamide (DEET). MDA, EA, and DEET inhibited Aedes aegypti from flying towards skin odor while BA had no such effect. Conversely, MDA had no effect on oviposition while EA, BA, and DEET deterred oviposition, with the strongest effect observed for BA. Thus, we confirm that EA and DEET are generally repellent, while MDA is repellent only in a host-seeking context, and BA is deterrent only in an oviposition context. These compounds appear of potential use in mosquito control programs.  相似文献   

15.
The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito‐repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65–98% escape for contact, 21.4–94.4% escape for non‐contact) compared to Ae. aegypti (3.7–72.2% escape (contact), 0–31.7% (non‐contact)) and Ae. albopictus (3.5–94.4% escape (contact), 11.2–63.7% (non‐contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65–97.8% escape) than non‐contact repellents (0–50.8% escape for non‐contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes.  相似文献   

16.
BioUD ® with the active ingredient 2-undecanone originally derived from wild tomato plants is a new repellent recently registered by the US EPA. Repellent efficacy of BioUD ® (7.75% 2-undecanone) and DEET (98.11%) was examined in the laboratory using a choice test between repellent-treated and control filter paper surfaces for Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. BioUD ® provided greater repellency against A. americanum and I. scapularis than DEET. No difference was found between BioUD ® and DEET against D. variabilis. In head-to-head assays between BioUD ® and DEET, undiluted and 50% dilutions of BioUD® were more repellent than undiluted DEET against all three species tested. Similarly, a 25% dilution of BioUD® was more repellent than DEET against A. americanum while no difference in mean percentage repellency was found between a 25% dilution of BioUD® and DEET against I. scapularis. Based on regression analysis, the concentration of BioUD® required for equivalent repellency to 98.11% DEET was 39.5% for D. variabilis and 29.7% for I. scapularis. A log-probit model could not be constructed for A. americanum from the dosages tested. Based on filter paper head-to-head assays, BioUD® is at least 2–4 times more active as a repellent than DEET against three species of ixodid ticks under the conditions of our laboratory bioassays.  相似文献   

17.
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.  相似文献   

18.
Mosquito larvicidal and repellent activities of phenolic acids of Chaetomorpha antennina (Bory) Kuetz. against the third instar larvae of Aedes aegypti were investigated. The larval mortality was observed after 24 h exposure. Results of mosquito larvicidal tests revealed that insoluble bound phenolic acids and soluble conjugated phenolic acid fractions of C. antennina had an excellent inhibitory effect against A. aegypti and its LC50 values were 23.4 and 44.6 μg ml−1, respectively. The repellency assay of insoluble bound phenolic acids and soluble conjugated phenolic acid fractions of C. antennina, at 10 μg cm−2 concentration gave 100% protection up to 120 min. The results indicate that phenolic acids of C. antennina have a wide spectrum of larvicidal and repellent activities against Aedes aegypti.  相似文献   

19.
Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases.  相似文献   

20.
Matthew DeGennaro 《Fly》2015,9(1):45-51
DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号