首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The intrachromosomal distribution patterns of chromatid aberrations induced by agents with delayed effects (as exemplified by ethanol and maleic hydrazide) were compared with those produced by agents with non-delayed effects (as exemplified by fast neutrons, X-rays and bleomycin). Despite nonrandomness of aberration distribution in all cases, the mutagens with nondelayed effects generally showed up with much less pronounced aberration hot spots than the mutagens with delayed effects. From the results obtained it is concluded that hot-spot expressivity is a characteristic "group-specific" feature of the two classes of mutagen and that aberration production during DNA replication (S-phase) by agents with delayed effects strongly favours a very pronounced aberration clustering, which is partly mutagen-specific. Possible causes of these differences with respect to hot-spot expressivity after treatment with mutagens showing non-delayed and delayed effects, respectively, are discussed.  相似文献   

3.
N-Methyl-N-nitrosourea (MNU) increased the induction of mutations to 8-azaguanine resistance in Chinese hamster cells in a dose-dependent manner. Mutations were only observed with toxic concentrations of MNU. Since a plot of the fraction of cells surviving alkylation against the extent of methylation of DNA exhibited a shoulder it followed that there was a threshold level of DNA reaction which did not lead to mutations possibly due to efficient repair of DNA damage. Post-alkylation incubation in medium containing caffeine decreased cell survival while at the same time it increased the induced mutation frequency. Mutation frequency was increased whether caffeine was present for 48 h or for a further 12 days in the presence of the selective agent 8-azaguanine. MNU caused chromatid aberrations in Chinese hamster cells and these reached a value of 15% of the treated cells by 48 h after methylation. Post-alkylation incubation in caffeine increased the percentage of cells showing chromosomal damage to a maximum of 86% of treated cells by 40 h after alkylation. A large proportion of cells exhibited completely fragmented or shattered chromosomes. The proportion of cells showing the presence of micronuclei also dramatically increased following incubation of methylated cells in caffeine. These results are discussed in terms of the possibility that damage to DNA is responsible for the lethal, mutagenic and cytological effects of MNU in Chinese hamster cells, and that there is a caffeine sensitive step(s) in the repair of the DNA damage which is responsible for these effects.  相似文献   

4.
The effects of post-treatments with caffeine in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N′-nitrosoguanidine were studied in human lymphocytes. Caffeine was found to potentiate the frequency of chromatid aberrations induced by all 3 S-dependent agents tested; the most striking enhancement being obtained when caffeine was present during the last 1.5 h before harvesting. Post-treatments in G2 with 3-aminobenzamide had no influence on the aberration frequency induced by thiotepa and N-methyl-N-nitro-N′-nitrosoguanidine.  相似文献   

5.
B Kaina 《Mutation research》1977,43(3):401-413
Chromatid gaps, breaks and aberrations involved in interchanges induced by N-methyl-N-nitrosourea (MNU) were found non-randomly distributed on individual chromosomes and chromosome segments (G bands) both in human diploid fibroblasts with trisomy 21 cultured in vitro. Aberration events were located exclusively in pale G bands. Considering cells in the first post-treatment mitosis, the pattern of aberration distribution, as revealed by the position of hot spots, varied with recovery time and was different in diploid and Down's cells. In comparison with diploid cells, the X chromosomes of Down's cells were not involved in aberrations. Despite the higher aberration frequencies of Down's cells, the number of hot spots and the proportion of aberrations located in hot spots were not increased in this cell type. Therefore, the increased chromosomal sensitivity to MNU of Down's cells does not reflect an increased sensitivity of special chromosomes or chromosome sites.  相似文献   

6.
Human fibroblast cell lines were pulse-treated for 1 h with either methylnitrosourea (MNU) or ethylnitrosourea (ENU) at various time intervals before harvesting for chromosome analysis. Cells treated with 1 X 10(-3) M, 5 X 10(-4) M, and 1 X 10(-4) M final concentrations of MNU and ENU during the G2 or M phases of the cell cycle showed a significant increase in chromatid-type abnormalities over controls. Cells exposed to MNU or ENU 23 h before harvest showed some chromosome-type abnormalities, reflecting probable damage induced during the G1 phase of the cell cycle or derived from chromatid damage induced during the previous cell cycle. The mitotic indices and incidences of abnormalities suggested a dose response effect when cells were treated with the two higher concentrations and the three concentrations, respectively, of MNU or ENU. Chromatid abnormalities were observed in MUN and ENU-treated cells from each of four cell lines. From this investigation, it was concluded that MNU and ENU treatment of human diploid cell lines in vitro induced both chromatid and chromosome aberrations. MNU and ENU, both of which had previously been shown to be mutagenic in experimental animals, are, therefore, also considered to be mutagenic at the chromosome level in human fibroblasts grown and treated in cell culture.  相似文献   

7.
E W Vogel 《Mutation research》1986,162(2):201-213
Postmeiotic cell stages of repair-proficient ring-X (RX) males were treated with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethylnitrosamine (DEN) or ethylnitrosourea (ENU) and then mated to either repair-defective (mei-9L1) or to repair-competent females (mei-9+). Absence of the mei-9+ function resulted in a hypermutability effect to all alkylating agents (AAs) when they were assayed for their ability to induce chromosomal aberrations (chromosome loss; CL), irrespective of marked differences in distribution of DNA adducts brought about by these AAs. This picture is different from that described previously for the induction of point mutations (Vogel et al., 1985a). There, evidence was presented indicating that reduction in DNA excision repair does not affect point mutation induction (recessive lethals) by those AAs most efficient in ring-oxygen alkylation such as ENU, DEN, N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and isopropyl methanesulfonate (iPMS): the order of hypermutability of AAs with mei-9L relative to mei-9+ was MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females were plotted against those determined for mei-9+ females, straight lines of following slopes were obtained: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4, and iPMS = ENU = DEN = ENNG = 1. Those findings, together with the recent observation that AAs do not split into two groups when assayed for their ability to cause CL, point to the involvement of different DNA alkylation products in ENU- and DEN-induced chromosome loss vs. that of point mutations. It is concluded that with ENU and DEN chromosomal loss results from N-alkylation products whereas point mutations (SLRL) are the consequence of interactions with oxygen-sites in DNA. Thus, as a consequence of a very dominating role of O-ethylguanine (and possibly O4-alkylation of thymine), N-alkylation in DNA does not contribute measurably to mutation induction in the case of ENU-type mutagens while O-alkylation, very clearly, does not show a positive correlation with the formation of chromosome breakage events in Drosophila. Conversely, it appeared that with MMS-type mutagens (MMS; dimethyl sulfate, DMS; trimethyl phosphate, TMP), alkylation products such as 7-methylguanine and 3-methyladenine, if unrepaired or misrepaired, are potentially mutagenic lesions causing both mutations and chromosomal aberrations.  相似文献   

8.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

9.
S(N)1-type alkylating agents, like N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU), are potent mutagens. Exposure to alkylating agents gives rise to O(6)-alkylguanine, a modified base that is recognized by DNA mismatch repair (MMR) proteins but is not repairable, resulting in replication fork stalling and cell death. We used a somatic mutation detection assay to study the in vivo effects of alkylation damage on lethality and mutation frequency in developing zebrafish embryos. Consistent with the damage-sensing role of the MMR system, mutant embryos lacking the MMR enzyme MSH6 displayed lower lethality than wild-type embryos after exposure to ENU and MNU. In line with this, alkylation-induced somatic mutation frequencies were found to be higher in wild-type embryos than in the msh6 loss-of-function mutants. These mutations were found to be chromosomal aberrations that may be caused by chromosomal breaks that arise from stalled replication forks. As these chromosomal breaks arise at replication, they are not expected to be repaired by non-homologous end joining. Indeed, Ku70 loss-of-function mutants were found to be equally sensitive to ENU as wild-type embryos. Taken together, our results suggest that in vivo alkylation damage results in chromosomal instability and cell death due to aberrantly processed MMR-induced stalled replication forks.  相似文献   

10.
Primary roots of a new karyotype of Vicia faba with all chromosomes inter-distinguishable have been used to study the induction by hydroxylamine hydrochloride (HA) of chromatid aberrations and their intrachromosomal distribution. HA induced both chromatid intra- and interchanges of the delayed type. The effectiveness of HA increased with increasing temperature and was dependent on the pH during treatment (more aberrations at pH 7.5 as compared with 4.8). The frequency of incomplete reunion was markedly higher after HA treatment than after treatment with maleic hydrazide (MH) or ethanol. In combined treatments, HA reduced the reunion involvement in HA-induced aberrations of certain chromosome segments was found and compared with distribution patterns of chromatid aberrations after treatment with MH and ethanol. Data and hypotheses concerning possible modes of action of HA eventually resulting in chromosome structural changes are discussed. It is concluded that alterations of the cytosine moiety in chromosomal DNA are not responsible for chromosomal damage induced by HA.  相似文献   

11.
Mutagenic, reproductive, and toxicity effects of two closely related chemicals, ethylnitrosourea (ENU) and methylnitrosourea (MNU), were compared at equimolar and near-equimolar doses in the mouse specific-locus test in a screen of all stages of spermatogenesis and spermiogenesis. In stem-cell spermatogonia (SG), ENU is more than an order of magnitude more mutagenic than MNU. During post-SG stages, both chemicals exhibit high peaks in mutation yield when differentiating spermatogonia (DG) and preleptotene spermatocytes are exposed. The mutation frequency induced by 75mgMNU/kg during this peak interval is, to date, the highest induced by any single-exposure mutagenic treatment - chemical or radiation - that allows survival of the exposed animal and its germ cells, producing an estimated 10 new mutations per genome. There is thus a vast difference between stem cell and differentiating spermatogonia in their sensitivity to MNU, but little difference between these stages in their sensitivity to ENU. During stages following meiotic metaphase, the highest mutation yield is obtained from exposed spermatids, but for both chemicals, that yield is less than one-quarter that obtained from the peak interval. Large-lesion (LL) mutations were induced only in spermatids. Although only a few of the remaining mutations were analyzed molecularly, there is considerable evidence from recent molecular characterizations of the marker genes and their flanking chromosomal regions that most, if not all, mutations induced during the peak-sensitive period did not involve lesions outside the marked loci. Both ENU and MNU treatments of post-SG stages yielded significant numbers of mutants that were recovered as mosaics, with the proportion being higher for ENU than for MNU. Comparing the chemicals for the endpoints studied and additional ones (e.g., chromosome aberrations, toxicity to germ cells and to animals, teratogenicity) revealed that while MNU is generally more effective, the opposite is true when the target cells are SG.  相似文献   

12.
To increase the sensitivity of cytogenetic surveillance of exposure to mutagens in the peripheral lymphocyte assay, structural chromosome aberrations (CA) were studied after inhibition of DNA synthesis and DNA repair with hydroxyurea and caffeine in culture 3 h prior to harvesting. CA and sister-chromatid exchanges (SCE) from conventional cultures from the same subjects were used for comparison. Smoking was used as exposure parameter. Thirty-two smokers and 35 nonsmokers were studied. In the inhibited cultures a significantly higher number of aberrations was found in lymphocytes from smokers than nonsmokers: chromatid breaks (20.4 vs. 11.8, p = 0.0002), chromosome breaks (4.5 vs. 1.7, p = 0.0003), and the number of cells with aberrations (18.9 vs. 12.4, p = 0.0001), when 50 cells per subject were analyzed. In conventional cultures no increase in gaps, chromatid and chromosome breaks or number of cells with aberrations was found in smokers when 100 cells from each subject were studied. Smokers showed an increased number of SCE (6.8 vs. nonsmokers 5.9, p = 0.02). A significant positive linear correlation (r = 0.39, p = 0.01) was seen between SCE and the number of cells with chromatid breaks from inhibited cultures. The present results indicate that adding hydroxyurea and caffeine to lymphocyte cultures for the last 3 h prior to harvesting may enhance the detection of cytogenetic damage from previous in vivo exposure to mutagens.  相似文献   

13.
The data on the dose dependencies of the induction of sister chromatid exchanges (SCE) and chromosomal aberrations during exposure of mouse bone marrow cells in vivo to 5 alkylating substances are provided. The efficacy of SCE induction was found to be higher than that of chromosomal aberrations. It was established that SCE induced by chemical mutagens in vivo and in vitro are more sensitive and stable tests than chromosomal aberrations.  相似文献   

14.
The concentration-dependent mutagenic, clastogenic, and cytocidal activities of mitomycin C (MC), methylnitrosourea (MNU), and ethylnitrosourea (ENU) were measured in the human lymphoblast cell line TK6. For treatments resulting in fewer than 2 lethal hits, MNU, ENU, and MC gave rise to apparently linear dose-response curves for gene mutations (hgprt and tk genes) as well as for chromosomal aberrations. The numbers of induced mutants at the tk and hgprt loci were similar between the two loci for each compound. However, the ratio of mutagenic activity relative to the clastogenic activity (aberrations/cell) was lowest for mitomycin C, intermediate for methylnitrosourea, and highest for ethylnitrosourea. These results confirm in human cells the general observation that the processes of mutagenesis and clastogenesis are nonidentical: compounds vary independently in their mutagenic and clastogenic potentials.  相似文献   

15.
A reconstructed karyotype of Vicia faba with all chromosomes individually distinguishable was treated with triethylene melamine (TEM), cytostasan (CYT) (a new benzimidazol nitrogen mustard), mitomycin C (MI), ethanol (EA) and X-rays. The distribution within chromosomes of induced chromatid abberations was non-random for all agents. The number of segments involved in aberration clustering corresponded to the number of sites representing constitutive heterochromatin, or the regions immediately adjacent to these, as evidenced by the position of Giemsa marker bands. Which of these potential regions of aberration clustering reacted with preferential involvement in aberrations was, in part at least, dependent upon the inducing agent used. It is argued that this may be due to differences in the base composition and/or molecular conformation of heterochromatic regions. Unexpectedly, the distribution pattern of chromatid aberrations induced by mitomycin C was found to be different from those after treatment with the alkylating agents TEM and cytostasan although mitomycin C is assumed to induce aberrations via alkylation. If mitomycin C-induced aberrations are indeed due to alkylation, this indicates that different alkylating agents do not necessarily result in identical patterns of abberation clustering. The other two alkylating agents and ethanol resulted in similar patterns of preferential distribution of abberations. X-Ray induced chromatid aberrations also showed a non-random intrachromosomal distribution, but the clustering was less pronounced than after treatment with the chemical agents.  相似文献   

16.
The effect of N-methyl-N-nitrosourea (MNU) on the cell cycle, DNA synthesis and chromosomal sensitivity of cultivated diploid fibroblasts and fibroblasts with trisomy 21 was investigated in vitro. With the exception of the inhibition of G2, Down's cells proved to be more sensitive than diploid cells with respect to the decrease of the mitotic and labelling index, the inhibition of the progression of cells through the early and middle S and the frequency of induced chromosomal aberrations. The chromosomal sensitivity was dependent on the position of cells in the cell cycle during treatment with MNU. If treated during late S no differences concerning the S block and aberration frequencies were found between diploid and Down's cells. However, if MNU treatment took place in the middle and early S, Down's cells were more sensitive. The higher aberration frequencies in Down's cells resulted from elevated levels of chromatid breaks, multiple fragmentations and chromatid translocations. Possible reasons for the increased sensitivity of Down's cells are discussed.  相似文献   

17.
Summary A study was made of the cytogenetic effect of mutagens with a delayed effect (ethylenimine and ethyl methanesulphonate) on Crepis capillaris seeds. The effect was found to depend on the physiological condition of the seeds. In seeds not subjected to prolonged storage, where only chromatid aberrations were occurring spontaneously, mutagens also induced chromatid aberrations only. If, however, because of physiological changes in the seeds (e.g. upon prolonged storage or when seeds were kept at an elevated temperature and humidity) a large number of chromosome-type aberrations appeared, they also appeared when the seeds were acted upon by mutagens with a delayed effect. The action of such mutagens was also found to depend on spontaneous mutation in seeds with different rates of germination. Special experiments showed that the interaction of ethylenimine with the metabolites of seeds in vitro leads to the formation of secondary active mutagens differing from ethylenimine in the nature of their action. The induction of chromosome-type aberrations by treating seeds with alkylating compounds may be due to the action of secondary mutagens.  相似文献   

18.
The dose curves for 5 chemicals were studied to compare the efficiency of induction of SCEs and chromosomal aberrations by "polycentric" mutagens. The number of SCEs was found to increase linearly with the dose while that of chromosomal aberrations--nonlinearly. The efficiency of SCEs induction by these mutagens was found to be 25-50 times as high as in the induction of chromosomal aberrations. Division of alkylating mutagens into "monocentric" and "polycentric" is shown to be useful. It reflects their different efficiency in damaging one or simultaneously two DNA strands. The correlation between SCEs and formation of aberrations of the chromatid type is stated.  相似文献   

19.
The relationship between chromosomal aberrations and sister chromatid exchanges (SCE's) after treatment of Vicia faba root tips with thiotepa, caffeine and 8-ethoxycaffeine (EOC) was studied by using a modified fluorescent plus Giemsa (EPG) technique. At concentrations which had little effect on the frequency of chromosomal aberrations, thiotepa strongly increased the frequency of SCE's, provided that the chromosomes were allowed to replicate between treatment and fixation. Frequently, the size of the exchanged material was smaller than the diameter of the chromatid. Post-treatments with caffeine of roots previously exposed to thiotepa strongly increased the frequency of aberrations, but had little effect on the frequency of SCE's. In contrast to thiotepa, EOC caused only a slight increase in the frequency of SCE's even at concentrations which produced a high frequency of chromosomal aberrations. Thus, there was not a close correlation between SCE's and chromosomal aberrations. Single-strand exchanges between the DNA double helices in sister chromatids were not detected.  相似文献   

20.
Treatment with sodium arsenite during the G2 phase potentiated the chromatid breaks and chromatid exchanges induced by ultraviolet light or 4-nitroquinoline 1-oxide but not those induced by methyl methanesulfonate, ethyl methanesulfonate, mitomycin C or cisplatin in Chinese hamster ovary cells. A comparison was made between the effects of treatment during G2 with sodium arsenite, cytosine-β- -arabinofuranoside, aphidicolin, hydroxyurea, caffeine, 3-aminobenzamide and novobiocin on the frequency of chromosomal aberrations induced by the above-mentioned S-dependent clastogens. It was found that the effects varied considerably, both quantitatively and qlalitatively. However, potentiation was more often observed in the chromosomal aberrations induced by ultraviolet light and 4-nitroquinoline 1-oxide than by other S-dependent clastogens, and the frequency of chromatid exchanges was potentiated only in cells pretreated with ultraviolet light or 4-nitroquinoline 1-oxide. Furthermore, for all of the S-dependent clastogens studied, treatment with cytosine-β- -arabinofuranoside during the G2 phase potentiated the frequency of chromatid breaks but not the frequency of chromatid exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号