首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A functional capsid protein (CP) is essential for host plant infection and insect transmission of Tomato yellow leaf curl virus (TYLCV) and other monopartite begomoviruses. We have previously shown that TYLCV CP specifically interacts with the heat shock protein 70 (HSP70) of the virus insect vector, Bemisia tabaci. Here we demonstrate that during the development of tomato plant infection with TYLCV, a significant amount of HSP70 shifts from a soluble form into insoluble aggregates. CP and HSP70 co-localize in these aggregates, first in the cytoplasm, then in the nucleus of cells associated with the vascular system. CP-HSP70 interaction was demonstrated by co-immunopreciptation in cytoplasmic - but not in nuclear extracts from leaf and stem. Inhibition of HSP70 expression by quercetin caused a decrease in the amount of nuclear CP aggregates and a re-localization of a GFP-CP fusion protein from the nucleus to the cytoplasm. HSP70 inactivation resulted in a decrease of TYLCV DNA levels, demonstrating the role of HSP70 in TYLCV multiplication in planta. The current study reveals for the first time the involvement of plant HSP70 in TYLCV CP intracellular movement. As described earlier, nuclear aggregates contained TYLCV DNA-CP complexes and infectious virions. Showing that HSP70 localizes in these large nuclear aggregates infers that these structures operate as nuclear virus factories.  相似文献   

2.
3.
Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.  相似文献   

4.
Race‐specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB‐ARC‐LRR proteins that carry a C‐terminal leucine‐rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I‐2) as a protein that interacts with the LRR domain of the tomato R protein I‐2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP‐independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2‐related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto‐active variants of I‐2 and Mi‐1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I‐2 and Mi‐1 protein stability was examined. RSI2 silencing compromised the accumulation of full‐length I‐2 in planta, but did not affect Mi‐1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full‐length I‐2 accumulation and a reduction in Mi‐1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I‐2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I‐2 protein using different molecular mechanisms. We conclude that I‐2 protein function requires RSI2, either through direct interaction with, and stabilization of I‐2 protein or by affecting signalling components involved in initiation of the hypersensitive response.  相似文献   

5.
6.
The HSP90 (heat shock protein 90), SGT1 (suppressor of G-two allele ofSkp1), and RAR1 (required forMla12 resistance) proteins in plants form a molecular chaperone complex which is involved in diverse biological signaling including development and disease resistance. The three components of this complex interact via specific protein binding motifs and recruit client proteins to initiate a specific signaling cascade in response to cellular or environmental cues. Although the functions of this chaperone complex during development/growth have not been well characterized, the HSP90 chaperone and SGT1 and RAR1 co-chaperones have been demonstrated to be essential signaling components of plant immune responses. These three proteins also play important roles in activation of the mammalian Nod genes, which possess a structurally conserved plant resistance (R) protein motif, NB-LRR (nucleotide binding site-leucine rich repeat). In this review, we summarize the structures and functions of these molecular chaperones, and discuss their putative modes of action in plant immune responses.  相似文献   

7.
Heat‐shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co‐chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full‐length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type‐III DnaJ domain‐containing HSP40 (GmHSP40.1), a co‐chaperone of HSP70, caused hypersensitive response (HR)‐like cell death. The HR‐like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP‐GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR‐inducing ability. GmHSP40.1 co‐localized with HcRed‐SE, a protein involved in pri‐miRNA processing, which has been shown to be co‐localized with SR33‐YFP, a protein involved in pre‐mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear‐localized DnaJ domain‐containing GmHSP40.1 in cell death and disease resistance in soybean.  相似文献   

8.
9.
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein‐like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat‐inducible and appears to play a major role in Lpl1 interaction. Pre‐incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1‐Hsp90 interaction induces F‐actin formation, thus, triggering an endocytosis‐like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl‐Hsp90 interaction.  相似文献   

10.
The first draft of the Chlamydomonas nuclear genome was searched for genes potentially encoding members of the five major chaperone families, Hsp100/Clp, Hsp90, Hsp70, Hsp60, the small heat shock proteins, and the Hsp70 and Cpn60 co-chaperones GrpE and Cpn10/20, respectively. This search yielded 34 potential (co-)chaperone genes, among them those 8 that have been reported earlier inChlamydomonas. These 34 genes encode all the (co-)chaperones that have been expected for the different compartments and organelles from genome searches in Arabidopsis, where 74 genes have been described to encode basically the same set of (co-)chaperones. Genome data from Arabidopsis and Chlamydomonas on the five major chaperone families are compared and discussed, with particular emphasis on chloroplast chaperones.  相似文献   

11.
Our current knowledge concerning the transmission of begomoviruses by the whitefly vector Bemisia tabaci is based mainly on research performed on the Tomato yellow leaf curl virus (TYLCV) complex and on a number of viruses originating from the Old World, such as Tomato leaf curl virus, and from the New World, including Abutilon mosaic virus, Tomato mottle virus, and Squash leaf curl virus. In this review we discuss the characteristics of acquisition, transmission and retention of begomoviruses by the whitefly vector, concentrating on the TYLCV complex, based on both published and recent unpublished data. We describe the cells and organs encountered by begomoviruses in B. tabaci. We show immunolocalisation of TYLCV to the B. tabaci stylet food canal and to the proximal part of the descending midgut, and TYLCV‐specific labelling was also associated with food in the lumen. The microvilli and electron‐dense material in the epithelial cells of the gut wall were also labelled by the anti TYLCV serum, pointing to a possible virus translocation route through the gut wall and to a putative site of long‐term virus storage. We describe the path of begomoviruses in their vector B. tabaci and in the non‐vector whitefly Trialeurodes vaporariorum, and we follow the rate of virus translocation in these insects. We discuss TYLCV transmission between B. tabaci during mating, probably by exchange of haemolymph. We show that following a short acquisition access to infected tomato plants, TYLCV remains associated with the B. tabaci vector for weeks, while the virus is undetectable after a few hours in the non‐vector T. vaporariorum. The implications of the long‐term association of TYLCV with B. tabaci in the light of interactions of the begomovirus with insect receptors are discussed.  相似文献   

12.
13.
AlphaB-crystallin homology, heat stress induction and chaperone activity suggested that a previously encloned gene product is a novel small heat shock protein (Hsp16.2). Suppression of Hsp16.2 by siRNA sensitized cells to hydrogen peroxide or taxol induced cell-death. Over-expressing of Hsp16.2 protected cells against stress stimuli by inhibiting cytochrome c release from the mitochondria, nuclear translocation of AIF and endonuclease G, and caspase 3 activation. Recombinant Hsp16.2 protected mitochondrial membrane potential against calcium induced collapse in vitro indicating that Hsp16.2 stabilizes mitochondrial membrane systems. Hsp16.2 formed self-aggregates and bound to Hsp90. Inhibition of Hsp90 by geldanamycin diminished the cytoprotective effect of Hsp16.2 indicating that this effect was Hsp90-mediated. Hsp16.2 over-expression increased lipid rafts formation as demonstrated by increased cell surface labeling with fluorescent cholera toxin B, and increased Akt phosphorylation. The inhibition of PI-3-kinase—Akt pathway by LY-294002 or wortmannin significantly decreased the protective effect of the Hsp16.2. These data indicate that the over-expression of Hsp16.2 inhibits cell death via the stabilization of mitochondrial membrane system, activation of Hsp90, stabilization of lipid rafts and by the activation of PI-3-kinase—Akt cytoprotective pathway.  相似文献   

14.
Heat shock protein 90 (Hsp90) is an abundant, dimeric ATP‐dependent molecular chaperone, and ATPase activity is essential for its in vivo functions. S‐nitrosylation of a residue located in the carboxy‐terminal domain has been shown to affect Hsp90 activity in vivo. To understand how variation of a specific amino acid far away from the amino‐terminal ATP‐binding site regulates Hsp90 functions, we mutated the corresponding residue and analysed yeast and human Hsp90 variants both in vivo and in vitro. Here, we show that this residue is a conserved, strong regulator of Hsp90 functions, including ATP hydrolysis and chaperone activity. Unexpectedly, the variants alter both the C‐terminal and N‐terminal association properties of Hsp90, and shift its conformational equilibrium within the ATPase cycle. Thus, S‐nitrosylation of this residue allows the fast and efficient fine regulation of Hsp90.  相似文献   

15.
Heat shock proteins (HSP)are essential molecular chaperones that play important roles in the stress stimulation of insects.Bemisia tabaci,a phloem feeder and invasive species,can cause extensive crop damage through direct feeding and transmission of plant viruses.Here we employed comprehensive genomics approaches to identity HSP superfamily members in the Middle East Asia Minor 1 whitefly genome.In total,we identified 26 Hsp genes,including three Hsp90,17 Hsp70,one Hsp60 and five sHSP (small heat shock protein)genes.The HSP gene superfamily of whitefly is expanded compared with the other five insects surveyed here.The gene structures among the same families are relatively conserved.Meanwhile,the motif compositions and secondary structures of BtHsp proteins were predicted.In addition,quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse across different tissues of whiteflies.Most Hsp genes were induced or repressed by thermal stress (40℃)and cold treatment (4℃)in whitefly.Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45℃.All the results showed the Hsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them from being affected by detrimental temperature conditions.Our observations highlighted the molecular evolutionary properties and the response mechanism to temperature assaults of Hsp genes in whitefly.  相似文献   

16.
17.
18.
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.  相似文献   

19.
20.
In transmitting plant viruses, insect vectors undergo physiological and behavioral alterations. The whitefly Bemisia tabaci is a vector of tomato yellow leaf curl virus (TYLCV), causing severe damages to various horticultural crop plants. To determine whether whitefly alteration is specific to vector species, the responses to TYLCV ingestion were compared between B. tabaci and Trialeurodes vaporariorum, a nonvector for TYLCV. The two species were reared on TYLCV‐infected and noninfected tomato, a host of TYLCV, and their longevity and fecundity were determined while rearing in either tomato or eggplant, a nonhost of TYLCV. TYLCV‐ingested B. tabaci increased their developmental rates but reduced fecundity when they were reared in either tomato or eggplant compared with those of TYLCV‐free ones. In contrast, TYLCV‐ingested T. vaporariorum did not show any of the aforementioned changes when reared on both plant species. In addition, TYLCV‐ingested B. tabaci increased their levels of three heat shock protein genes ( hsp20, hsp70, and hsp90) against thermal stress, whereas TYLCV‐ingested T. vaporariorum did not. The presence of TYLCV virions was identified in two colonies of both species via polymerase chain reaction analysis. TYLCV was detected in the whole body, saliva, and eggs of B. tabaci, while TYLCV was detected only in the whole body but not in the saliva and eggs of T. vaporariorum. The present results strongly indicated that TYLCV specifically manipulate physiological processes of the vector species, B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号