首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nicotiana benthamiana plants were transformed with the movement protein (MP) gene of tobacco mosaic virus (TMV), usingAgrobacterium-mediated transformation. Plants regenerated from the transformed cells accumulated 30-kDa MP and complemented the activity of TMV MP when infected with chimeric TMVs containing defective MR These transgenic plants displayed stunting, pale-green leaves, and starch accumulations, indicating that TMV MP altered the carbon partitioning for leaves involved in TMV cell-to-cell movement.  相似文献   

3.
The intercellular and intracellular distribution of the movement protein (MP) of the Ob tobamovirus was examined in infected leaf tissues using an infectious clone of Ob in which the MP gene was translationally fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria. In leaves of Nicotiana tabacum and N. benthamiana, the modified virus caused fluorescent infection sites that were visible as expanding rings. Microscopy of epidermal cells revealed subcellular patterns of accumulation of the MP:GFP fusion protein which differed depending upon the radial position of the cells within the fluorescent ring. Punctate, highly localized fluorescence was associated with cell walls of all of the epidermal cells within the infection site, and apparently represents association of the fusion protein with plasmodesmata; furthermore, fluorescence was retained in cell walls purified from infected leaves. Within the brightest region of the fluorescent ring, the MP:GFP was observed in irregularly shaped inclusions in the cortical regions of infected cells. Fluorescent filamentous structures presumed to represent association of MP:GFP with microtubules were observed, but were distributed differently within the infection sites on the two hosts. Within cells containing filaments, a number of fluorescent bodies, some apparently streaming in cytoplasmic strands, were also observed. The significance of these observations is discussed in relation to MP accumulation, targeting to plasmodesmata, and degradation.  相似文献   

4.
Gene I of cauliflower mosaic virus (CaMV) encodes a protein that is required for virus movement. The CaMV movement protein (MP) was used in a yeast 2-hybrid system to screen an Arabidopsis cDNA library for cDNAs encoding MP-interacting (MPI) proteins. Three different clones were found encoding proteins (MPI1, -2 and -7) that interact with the N-terminal third of the CaMV MP. The interaction in the 2-hybrid system between MPI7 and CaMV MP mutants correlated with the infectivity of the mutants. A non-infectious MP mutant, ER2A, with two amino acid changes in the N-terminal third of the MP failed to interact with MPI7, while an infectious second-site mutant, that differed from ER2A by only a single amino acid change, interacted in the 2-hybrid system. MPI7 is encoded by a member of a large, but diverse gene family in Arabidopsis. MPI7 is related in sequence, size and hydropathy profile to mammalian proteins (such as rat PRA1) described as a rab acceptor. The gene encoding MPI7 is expressed widely is Arabidopsis plants, and in transgenic plants the MPI7:GFP fusion protein is localized in the cytoplasm, concentrated in punctate spots. In protoplasts transfected with CFP:MP and MPI7:YFP, CFP:MP colocalized to some of the sites where MPI7:YFP is expressed. At these sites, fluorescence resonance energy transfer (FRET) between fluorophores was observed indicating an interaction in planta between the CaMV MP and MPI7.  相似文献   

5.
Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive‐stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell‐to‐cell movement of transport‐deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a ‘binary movement block’ (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)‐BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP‐BMB1 was directed to cell wall‐adjacent elongated bodies at the cell periphery, to cell wall‐embedded punctate structures co‐localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell‐to‐cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule‐based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene‐coded transport system.  相似文献   

6.
The movement protein (MP) and coat protein (CP) encoded by Alfalfa mosaic virus (AMV) RNA 3 are both required for virus transport. RNA 3 vectors that expressed nonfused green fluorescent protein (GFP), MP:GPF fusions, or GFP:CP fusions were used to study the functioning of mutant MP and CP in protoplasts and plants. C-terminal deletions of up to 21 amino acids did not interfere with the function of the CP in cell-to-cell movement, although some of these mutations interfered with virion assembly. Deletion of the N-terminal 11 or C-terminal 45 amino acids did not interfere with the ability of MP to assemble into tubular structures on the protoplast surface. Additionally, N- or C-terminal deletions disrupted tubule formation. A GFP:CP fusion was targeted specifically into tubules consisting of a wild-type MP. All MP deletion mutants that showed cell-to-cell and systemic movement in plants were able to form tubular structures on the surface of protoplasts. Brome mosaic virus (BMV) MP did not support AMV transport. When the C-terminal 48 amino acids were replaced by the C-terminal 44 amino acids of the AMV MP, however, the BMV/AMV chimeric protein permitted wild-type levels of AMV transport. Apparently, the C terminus of the AMV MP, although dispensable for cell-to-cell movement, confers specificity to the transport process.  相似文献   

7.
Previous micro-injection studies showed that some recombinant viral movement proteins and plant proteins produced in and purified from Escherichia coli could traffic from cell to cell. However, the relevance of these findings obtained by micro-injecting proteins produced in E. coli to the real functions of these proteins when produced in planta has been questioned. In this study, specific gene constructs were delivered by biolistic bombardment into tobacco (Nicotiana tabacum var Samsun) leaf epidermis for in planta production of the green fluorescent protein (GFP) and various fusions between the cucumber mosaic virus 3a movement protein (3a MP) and GFP. Free GFP remained in cells producing it. In contrast, 3a MP:GFP fusion protein moved from approximately half of the cells producing it into neighboring cells. The movement also occurred at 4°C. A mutant 3a MP:GFP was incapable of cell-to-cell movement in all cases. A 3a MP:GUS fusion protein produced in this manner also moved from cell to cell. Our data provide direct evidence that specific viral proteins produced in planta can be transported between cells. Furthermore, our data suggest that the CMV 3a MP contains a signal for transport. Our approach is simple and efficient and has many potential applications in studying plasmodesma-mediated macromolecular transport.  相似文献   

8.
《Gene》1996,173(1):75-79
A genetic fusion between the gene encoding green fluorescent protein (GFP) from the jellyfish Aequorea victoria, with that of the Ob-tobamovirus movement protein (MP) resulted in the expression of a fluorescent fusion protein (MP: :GFP) that was fully biologically active in mediating the cell-to-cell spread of the Ob-virus. The MP::GFP fusion was used to follow in planta the subcellular trafficking of MP. GFP-tagged MP was transiently expressed and found to be associated with several subcellular compartments and structures including trans-wall structures, presumably plasmodesmata, and filament structures. The MP::GFP fusion can be used to monitor MP association with host proteins and structures, and for the isolation of interacting host components.  相似文献   

9.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

10.
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T‐DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, α‐tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus‐end marker GFP–EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell‐to‐cell movement of TMV encoding GFP‐tagged movement protein (MP‐GFP) is reduced in ATER2 accompanied by a reduced association of MP‐GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.  相似文献   

11.
Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.  相似文献   

12.
Xiong R  Wu J  Zhou Y  Zhou X 《Journal of virology》2008,82(24):12304-12311
Rice stripe virus (RSV) is the type member of the genus Tenuivirus. RSV has four single-stranded RNAs and causes severe disease in rice fields in different parts of China. To date, no reports have described how RSV spreads within host plants or the viral and/or host factor(s) required for tenuivirus movement. We investigated functions of six RSV-encoded proteins using trans-complementation experiments and biolistic bombardment. We demonstrate that NSvc4, encoded by RSV RNA4, supports the intercellular trafficking of a movement-deficient Potato virus X in Nicotiana benthamiana leaves. We also determined that upon biolistic bombardment or agroinfiltration, NSvc4:enhanced green fluorescent protein (eGFP) fusion proteins localize predominantly near or within the walls of onion and tobacco epidermal cells. In addition, the NSvc4:eGFP fusion protein can move from initially bombarded cells to neighboring cells in Nicotiana benthamiana leaves. Immunocytochemistry using tissue sections from RSV-infected rice leaves and an RSV NSvc4-specific antibody showed that the NSvc4 protein accumulated in walls of RSV-infected leaf cells. Gel retardation assays revealed that the NSvc4 protein interacts with single-stranded RNA in vitro, a common feature of many reported plant viral movement proteins (MPs). RSV NSvc4 failed to interact with the RSV nucleocapsid protein using yeast two-hybrid assays. Taken together, our data indicate that RSV NSvc4 is likely an MP of the virus. This is the first report describing a tenuivirus MP.  相似文献   

13.
Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.  相似文献   

14.
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra‐ and/or intercellular viral movement. Using yeast two‐hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid‐mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP–PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP‐containing complexes less efficient and diminishing cell‐to‐cell movement.  相似文献   

15.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

16.
The movement protein (MP) and coat protein (CP) of tobamoviruses play critical roles in viral cell-to-cell and long-distance movement, respectively. Cucumber green mottle mosaic virus (CGMMV) is a member of the genus Tobamovirus. The functions of CGMMV MP and CP during viral infection remain largely unclear. Here, we show that CGMMV MP can interact with CP in vivo, and the amino acids at positions 79–128 in MP are vital for the MP–CP interaction. To confirm this finding, we mutated five conserved residues within the residue 79–128 region and six other conserved residues flanking this region, followed by in vivo interaction assays. The results showed that the conserved threonine residue at the position 107 in MP (MPT107) is important for the MP–CP interaction. Substitution of T107 with alanine (MPT107A) delayed CGMMV systemic infection in Nicotiana benthamiana plants, but increased CGMMV local accumulation. Substitutions of another 10 conserved residues, not responsible for the MP–CP interaction, with alanine inhibited or abolished CGMMV systemic infection, suggesting that these 10 conserved residues are possibly required for the MP movement function through a CP-independent manner. Moreover, two movement function-associated point mutants (MPF17A and MPD97A) failed to cause systemic infection in plants without impacting on the MP–CP interaction. Furthermore, we have found that co-expression of CGMMV MP and CP increased CP accumulation independent of the interaction. MP and CP interaction inhibits the salicylic acid-associated defence response at an early infection stage. Taken together, we propose that the suppression of host antiviral defence through the MP–CP interaction facilitates virus systemic infection.  相似文献   

17.
The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up‐regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up‐regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato. Knocking down the expression of NbRABG3f using a virus‐induced gene silencing technique in a protoplast inoculation assay significantly reduced the accumulation of BaMV. A transiently expressed NbRABG3f protein in N. benthamiana plants followed by BaMV inoculation enhanced the accumulation of BaMV to approximately 150%. Mutants that had the catalytic site mutation (NbRABG3f/T22N) or had lost their membrane‐targeting capability (NbRABG3f/ΔC3) failed to facilitate the accumulation of BaMV in plants. Because the Rab GTPase is responsible for vesicle trafficking between organelles, a mutant with a fixed guanosine diphosphate form was used to identify the donor compartment. The use of green fluorescent protein (GFP) fusion revealed that GFP‐NbRABG3f/T22N clearly co‐localized with the Golgi marker. In conclusion, BaMV may use NbRABG3f to form vesicles derived from the Golgi membrane for intracellular trafficking to deliver unidentified factors to its replication site; thus, both GTPase activity and membrane‐targeting ability are crucial for BaMV accumulation at the cell level.  相似文献   

18.
19.
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus‐encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro‐Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2‐green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2‐GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)‐C2 displayed chlorotic lesions and stunted growth. PVX‐C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host‐defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3–2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3–2 gene and pNbCMT3–2::GUS (β‐glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.  相似文献   

20.
A key challenge in cell biology is to directly link protein localization to function. The green fluorescent protein (GFP)‐binding protein, GBP, is a 13‐kDa soluble protein derived from a llama heavy chain antibody that binds with high affinity to GFP as well as to some GFP variants such as yellow fluorescent protein (YFP). A GBP fusion to the red fluorescent protein (RFP), a molecule termed a chromobody, was previously used to trace in vivo the localization of various animal antigens. In this study, we extend the use of chromobody technology to plant cells and develop several applications for the in vivo study of GFP‐tagged plant proteins. We took advantage of Agrobacterium tumefaciens‐mediated transient expression assays (agroinfiltration) and virus expression vectors (agroinfection) to express functional GBP:RFP fusion (chromobody) in the model plant Nicotiana benthamiana. We showed that the chromobody is effective in binding GFP‐ and YFP‐tagged proteins in planta. Most interestingly, GBP:RFP can be applied to interfere with the function of GFP fusion protein and to mislocalize (trap) GFP fusions to the plant cytoplasm in order to alter the phenotype mediated by the targeted proteins. Chromobody technology, therefore, represents a new alternative technique for protein interference that can directly link localization of plant proteins to in vivo function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号