首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G‐protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1‐interacting proteins, including PsHint1, a histidine triad (HIT) domain‐containing protein orthologous to human HIT nucleotide‐binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)‐ and guanosine diphosphate (GDP)‐bound forms of PsGPA1. An analysis of the gene‐silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1‐silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα‐independent pathway involved in the pathogenicity of P. sojae.  相似文献   

3.
4.
5.
Fusarium oxysoporum f. sp. radicis-cucumerinum (Forc) is able to cause disease in cucumber, melon, and watermelon, while F. oxysporum f. sp. melonis (Fom) can only infect melon plants. Earlier research showed that mobile chromosomes in Forc and Fom determine the difference in host range between Forc and Fom. By closely comparing these pathogenicity chromosomes combined with RNA-sequencing data, we selected 11 candidate genes that we tested for involvement in the difference in host range between Forc and Fom. One of these candidates is a putative effector gene on the Fom pathogenicity chromosome that has nonidentical homologs on the Forc pathogenicity chromosome. Four independent Forc transformants with this gene from Fom showed strongly reduced or no pathogenicity towards cucumber, while retaining pathogenicity towards melon and watermelon. This suggests that the protein encoded by this gene is recognized by an immune receptor in cucumber plants. This is the first time that a single gene has been demonstrated to determine a difference in host specificity between formae speciales of F. oxysporum.  相似文献   

6.
Programmed cell death (PCD) initiated at the pathogen‐infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER‐localized type IIB Ca2+‐ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N‐ and fungal‐immune receptor Cf9‐mediated PCD, as well as non‐host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein‐induced cell death. The accelerated PCD rescues loss‐of‐resistance phenotype of Rar1, HSP90‐silenced plants, but not SGT1‐silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N‐immune receptor‐mediated PCD. Our results indicate that ER‐Ca2+‐ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response.  相似文献   

7.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

8.
Phytophthora cactorum is one of the most economically important soilborne oomycete pathogens in the world. It infects more than 200 plant species spanning 54 families, most of which are herbaceous and woody species. Although traditionally considered to be a generalist, marked differences of P. cactorum isolates occur in degree of pathogenicity to different hosts. As the impact of crop loss caused by this species has increased recently, there has been a tremendous increase in the development of new tools, resources, and management strategies to study and combat this devastating pathogen. This review aims to integrate recent molecular biology analyses of P. cactorum with the current knowledge of the cellular and genetic basis of its growth, development, and host infection. The goal is to provide a framework for further studies of P. cactorum by highlighting important biological and molecular features, shedding light on the functions of pathogenicity factors, and developing effective control measures.

Taxonomy

P. cactorum (Leb. & Cohn) Schröeter: kingdom Chromista; phylum Oomycota; class Oomycetes; order Peronosporales; family Peronosporaceae; genus Phytophthora.

Host range

Infects about 200 plant species in 154 genera representing 54 families. Economically important host plants include strawberry, apple, pear, Panax spp., and walnut.

Disease symptoms

The soilborne pathogen often causes root, stem, collar, crown, and fruit rots, as well as foliar infection, stem canker, and seedling damping off.  相似文献   

9.
Colletotrichum truncatum, the causal agent of soybean anthracnose, invades host plants by forming a specialised infection structure called an appressorium. Mitogen‐activated protein kinase (MAPK) genes have been shown to play vital roles in several phytopathogenic fungi in regulating various infection processes, including spore germination, melanised appressorium formation, appressorial penetration and subsequent invasive growth in host plants. In this study, we identified and characterised the first Fus3/Kss1‐related MAPK gene, CtPMK1, in Colletotrichum truncatum, which is related to PMK1 in Magnaporthe oryzae. Disruption of CtPMK1 in C. truncatum resulted in a mutant with slightly reduced mycelial growth (‐30%) and melanisation that is deficient in sporulation (‐99%), as observed in the CMK1 mutant of Colletotrichum lagenarium (a synonym of Colletotrichum orbiculare, which is now the accepted name for this taxon). In contrast to CMK1 of C. lagenarium, conidia from the Ctpmk1 mutant germinated normally on glass slides and onion epidermal surfaces. Our findings suggest that there are differences in the types of in vitro functions controlled by PMK1, even between closely related species. Furthermore, the Ctpmk1 mutant failed to form appressoria or hyphopodia, subsequently resulting in the complete loss of pathogenicity on host plants. Overall, the results indicate that the Fus3/Kss1‐related MAPK gene has a conserved role in infection structure formation and pathogenicity in phytopathogenic fungi.  相似文献   

10.
Surveys of patterns of genetic variation in natural sympatric and allopatric populations of recently diverged species are necessary to understand the processes driving intra- and interspecific diversification. The South American moths Cactoblastis cactorum, Cactoblastis doddi and Cactoblastis bucyrus are specialized in the use of cacti as host plants. These species have partially different geographic ranges and differ in patterns of host plant use. However, there are areas that overlap, particularly, in northwestern Argentina, where they are sympatric. Using a combination of genome-wide SNPs and mitochondrial data we assessed intra and interspecific genetic variation and investigated the relative roles of geography and host plants on genetic divergence. We also searched for genetic footprints of hybridization between species. We identified three well delimited species and detected signs of hybridization in the area of sympatry. Our results supported a hypothetical scenario of allopatric speciation in the generalist Ccactorum and genetic interchange during secondary geographic contact with the pair of specialists Cbucyrus and Cdoddi that probably speciated sympatrically. In both cases, adaptation to new host plants probably played an important role in speciation. The results also suggested the interplay of geography and host plant use as drivers of divergence and limiting gene flow at intra and interspecific levels.  相似文献   

11.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

12.
【目的】分析辣椒疫霉中RXLR型效应子PcAvh2的序列多态性,研究该效应子在辣椒疫霉生长发育和侵染阶段的转录特征及其生物学功能。【方法】本研究通过高保真扩增,分析2个烟草疫霉、1个恶疫霉和31个辣椒疫霉菌株的PcAvh2序列;提取辣椒疫霉菌丝、游动孢子囊、游动孢子、萌发休止孢和7个侵染时间点(1.5、3、6、12、24、36、72 h)的本氏烟根部总RNA,利用RT-qPCR分析PcAvh2的转录表达水平;利用PVX瞬时表达系统,分析PcAvh2是否抑制6种效应子(BAX、INF1、PsojNIP、PsCRN63、PsAvh241、R3a/Avr3a)激发的植物免疫反应;利用CaCl_2-PEG介导的原生质体稳定转化技术,沉默PcAvh2基因,分析辣椒疫霉致病力的变化。【结果】PcAvh2为典型的RXLR效应子,在辣椒疫霉群体中该效应子具有10个等位基因,而且烟草疫霉和恶疫霉中也存在该效应子。该基因在辣椒疫霉的侵染阶段上调表达,它能够抑制6种效应子激发的植物免疫反应,进一步研究发现基因沉默导致辣椒疫霉的致病力显著下降。【结论】RXLR型效应子PcAvh2是辣椒疫霉中一个重要的侵染致病因子。  相似文献   

13.
Oomycetes represent a unique group of plant pathogens that are phylogenetically distant from true fungi and cause significant crop losses and environmental damage. Understanding of the genetic basis of host plant susceptibility facilitates the development of novel disease resistance strategies. In this study, we report the identification of an Arabidopsis thaliana T-DNA mutant with enhanced resistance to Phytophthora parasitica with an insertion in the Raf-like mitogen-activated protein kinase kinase kinase gene Raf36. We generated additional raf36 mutants by CRISPR/Cas9 technology as well as Raf36 complementation and overexpression transformants, with consistent results of infection assays showing that Raf36 mediates Arabidopsis susceptibility to P. parasitica. Using a virus-induced gene silencing assay, we silenced Raf36 homologous genes in Nicotiana benthamiana and demonstrated by infection assays the conserved immune function of Raf36. Mutagenesis analyses indicated that the kinase activity of Raf36 is important for its immune function and interaction with MKK2, a MAPK kinase. By generating and analysing mkk2 mutants and MKK2 complementation and overexpression transformants, we found that MKK2 is a positive immune regulator in the response to Pparasitica infection. Furthermore, infection assay on mkk2 raf36 double mutant plants indicated that MKK2 is required for the raf36-conferred resistance to Pparasitica. Taken together, we identified a Raf-like kinase Raf36 as a novel plant susceptibility factor that functions upstream of MKK2 and directly targets it to negatively regulate plant resistance to Pparasitica.  相似文献   

14.
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)‐box‐containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)‐based gene silencing was employed to alter the expression of SsFkh1. RNA‐silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis‐related laccase genes and a polyketide synthase‐encoding gene were significantly down‐regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi‐silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.  相似文献   

15.
Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR‐like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non‐pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen’s host.  相似文献   

16.
In Australia, fungi associated with larvae of the biological control agent Cactoblastis cactorum may contribute to the control of the exotic weed pricklypear (Opuntia inermis). C. cactorum larvae were assessed for their ability to vector pathogenic fungi into O. inermis by the infestation of larvae with fungal suspensions. Six fungal isolates caused disease after being carried into the host on external surfaces of larvae, and propagules of one isolate (UQ5109) initiated disease after being transferred from the cladode epidermis into the host by larvae feeding on the plant. Scanning electron microscopy revealed extensive hyphal growth on the external surfaces of larvae infested with several of the isolates. Fungi isolated from field-grown O. inermis cladodes were tested for pathogenicity to this plant in an in vivo plant assay. In total, 152 isolates were screened, 22 of which infected the host in pathogenicity tests. Only 1 (UQ5115) infected undamaged host tissue, whereas the remainder required the host to be wounded before infection could proceed. The majority of isolates were only weakly pathogenic, even when inoculated via wounds, suggesting that most were either saprophytes or weak parasites. This study demonstrates that it is possible for larvae of C. cactorum to transmit fungal pathogens into O. inermis tissue and it has provided a sound basis for future field work to determine the contribution that fungi make to the control of O. inermis.  相似文献   

17.
Four fungicides were evaluated for their effectiveness against Phytophthora diseases of peach trees and their ability to absorbed and translocated by roots of peach tree in laboratory. Meta‐laxyl suppressed the development of P. cactorum and P. citwphthora on segments. Fosetyl‐Al showed variable fungicidal activity against P. cactorum and P. citwphthora. Both dimetho‐morph and cyraoxanil were not effective to inhibit the growth of fungi on segments. Section of tree trunks in 2‐yr‐old GF 677 trees were painted with one of the test fungicides. Strips of bark were removed 10 and 20 days after painting within treated area and inoculated with P. cactorum and P. citwphthora. Generally, the results agree with them obtained with excised stem and excised twig methods. Exception is the dimethomorph that reduced the development of P. cartorum and P. citrophthora. This study indicated that application with metalaxyl to the peach tree appears to be an effective procedure to control Phytophthora diseases on peach trees.  相似文献   

18.
The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50 mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV‐induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim was made without fulfilling the molecular Koch's postulates because the UV mutants are genetically undefined and harbour a developmental defect in sclerotial production. Here, we generated oxalate‐minus mutants of S. sclerotiorum using two independent mutagenesis techniques, and tested the resulting mutants for growth at different pHs and for pathogenicity on four host plants. The oxalate‐minus mutants accumulated fumaric acid, produced functional sclerotia and have reduced ability to acidify the environment. The oxalate‐minus mutants retained pathogenicity on plants, but their virulence varied depending on the pH and buffering capacity of host tissue. Acidifying the host tissue enhanced virulence of the oxalate‐minus mutants, whereas supplementing with oxalate did not. These results suggest that it is low pH, not oxalic acid itself, that establishes the optimum conditions for growth, reproduction, pathogenicity and virulence expression of S. sclerotiorum. Exonerating oxalic acid as the primary pathogenicity determinant will stimulate research into identifying additional candidates as pathogenicity factors towards better understanding and managing Sclerotinia diseases.  相似文献   

19.
SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining and PcSDA1‐green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non‐filamentous yeasts and human cells.  相似文献   

20.
NUT1, a gene homologous to the major nitrogen regulatory genesnit-2 ofNeurospora crassa andareA ofAspergillus nidulans, was isolated from the rice blast fungus,Magnaporthe grisea. NUT1 encodes a protein of 956 amino acid residues and, likenit-2 andareA, has a single putative zinc finger DNA-binding domain. Functional equivalence ofNUT1 toareA was demonstrated by introducing theNUT1 gene by DNA-mediated transformation into anareA loss-of-function mutant ofA. nidulans. The introducedNUT1 gene fully complemented theareA null mutation, restoring to the mutant the ability to utilize a variety of nitrogen sources. In addition, the sensitivity ofAspergillus NUT1 transformants to ammonium repression of extracellular protease activity was comparable to that of wild-typeA. nidulans. Thus,NUT1 andareA encode functionally equivalent gene products that activate expression of nitrogen-regulated genes. A one-step gene disruption strategy was used to generatenutl mutants ofM. grisea by transforming a rice-infecting strain with a disruption vector in which a gene for hygromycin B phosphotransferase (Hyg) replaced the zinc-finger DNA-binding motif ofNUT1. Of 31 hygromycin B (hyg B)-resistant transformants shown by Southern hybridization to contain a disruptedNUT1 gene (nut1::Hyg), 26 resulted from single-copy replacement events at theNUT1 locus. Althoughnut1 transformants ofM. grisea failed to grown on a variety of nitrogen sources, glutamate, proline and alanine could still be utilized. This contrasts withA. nidulans where disruption of the zinc-finger region ofareA prevents utilization of nitrogen sources other than ammonium and glutamine. The role ofNUT1 and regulation of nitrogen metabolism in the disease process was evaluated by pathogenicity assays. The infection efficiency ofnut1 transformants on susceptible rice plants was similar to that of the parental strain, although lesions were reduced in size. These studies demonstrate that theM. grisea NUT1 gene activates expression of nitrogen-regulated genes but is dispensable for pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号