首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Indo-Pacific humpback dolphins (Sousa chinensis) use whistles to communicate with their conspecifics. Little is known about the acoustic repertoire of Indo-Pacific humpback dolphins in waters southwest of Hainan Island, a newly recorded population in 2014. In this study, whistles of Hainan humpback dolphin population were collected by using autonomous acoustic recorders. The fundamental frequencies and durations of whistles were in ranges of 0.71–21.35 kHz and 0.06–2.22 s, respectively. Significant intraspecific differences in duration and frequency of whistles were found between the Hainan population and the other geographically neighboring populations (in Chinese waters) or the population in Malaysia waters. Compared with other Sousa species, significant interspecific differences were also observed. Based on clustering analysis, the whistle parameters of neighboring populations were likely similar to each other. Significant differences were found between humpback dolphins in waters southwest of Hainan Island and those dolphins in the neighboring areas, supporting the hypothesis that this population may be independent. Ambient noise measurements in waters of Hainan Island, Zhanjiang, and Sanniang Bay showed that humpback dolphin populations may use whistles with longer duration, lower frequency, and fewer inflection points for more effective communication to adapt to a noisier environment.  相似文献   

2.
    
This paper presents an electrocardiogram (ECG) data mining scheme based on the ECG frame classification realised by a dynamic time warping (DTW) matching technique, which has been used successfully in speech recognition. We use the DTW to classify ECG frames because ECG and speech signals have similar non-stationary characteristics. The DTW mapping function is obtained by searching the frame from its end to start. A threshold is setup for DTW matching residual either to classify an ECG frame or to add a new class. Classification and establishment of a template set are carried out simultaneously. A frame is classified into a category with a minimal residual and satisfying a threshold requirement. A classification residual of 1.33% is achieved by the DTW for a 10-min ECG recording.  相似文献   

3.
This study examines whether individual adult male blue monkeys (Cercopithecus mitis stuhlmanni) can be identified through acoustic analysis of their “pyow” calls. It is possible to reliably assign the pyow call of the blue monkeys of Kibale Forest, Uganda, to the individual caller based on the acoustic properties of the vocalization. Analysis of pyows made by a recognizable male over a 10-yr period shows that the acoustic properties of one individual's pyow call can remain relatively constant over time. Acoustic analysis of pyow calls may provide a relatively easy and reliable method to document tenure lengths of adult male blue monkeys resident in groups. Similar analyses of the loud calls of other species of primates may, likewise, prove to be useful in documenting long-term membership. © 1992 Wiley-Liss, Inc.  相似文献   

4.
The distribution of the three friendly close-range vocalization types known in the Felidae was plotted on a recently published phylogeny of the cat family (Felidae) based on sequence comparisons of two mitochondrial DNA genes and other molecular and biochemical characters, with extrapolated divergence ages of its various lineages. It was found to be congruent with this phylogeny. One of the sound types is likely to be present in 30 species of the family (documented in 22 so far), another is present in 4, and the third in 2 species only; these sound types represent a phylogenetic transformation series. The latter two vocalization types also differ considerably from the first in the mode of sound production. From this, evolutionary conservatism over a long epoch for the one widespread vocalization type can be inferred, and less conservatism in the type present in four species, while the emergence of the least common type is evidence of relatively considerable and rapid evolutionary change. Thus, acoustic communication signals in a group of taxa can evolve at considerably different rates, and for a specific character this rate can differ between different lineages of that group. The ultimate causes of the evolutionary stability or of the subsequent relatively rapid change in sound structure and mode of sound production in these felid vocalizations are unknown.  相似文献   

5.
A new method is introduced which tolerates distortions between spectrogram patterns in template matching. Cross-correlation provides a fast method to calculate similarities but it is sensitive to durational and spectral fluctuations. Dynamic time warping tolerates durational differences but requires that frequency components match. An extension to dynamic time warping is introduced where frequency is warped in addition to time. This allows for a detailed analysis to find the similarities and differences between the sound units to be compared. The method was applied to analyses of owl and Bengalese finch vocalizations.  相似文献   

6.
    
  相似文献   

7.
    
The recent increase in data accuracy from high resolution accelerometers offers substantial potential for improved understanding and prediction of animal movements. However, current approaches used for analysing these multivariable datasets typically require existing knowledge of the behaviors of the animals to inform the behavioral classification process. These methods are thus not well‐suited for the many cases where limited knowledge of the different behaviors performed exist. Here, we introduce the use of an unsupervised learning algorithm. To illustrate the method's capability we analyse data collected using a combination of GPS and Accelerometers on two seabird species: razorbills (Alca torda) and common guillemots (Uria aalge). We applied the unsupervised learning algorithm Expectation Maximization to characterize latent behavioral states both above and below water at both individual and group level. The application of this flexible approach yielded significant new insights into the foraging strategies of the two study species, both above and below the surface of the water. In addition to general behavioral modes such as flying, floating, as well as descending and ascending phases within the water column, this approach allowed an exploration of previously unstudied and important behaviors such as searching and prey chasing/capture events. We propose that this unsupervised learning approach provides an ideal tool for the systematic analysis of such complex multivariable movement data that are increasingly being obtained with accelerometer tags across species. In particular, we recommend its application in cases where we have limited current knowledge of the behaviors performed and existing supervised learning approaches may have limited utility.  相似文献   

8.
    
In domestic dogs Canis familiaris, vocal traits have been investigated for barks and growls, and the relationship between individual body size and vocal traits investigated for growls, with less corresponding information for whines. In this study, we examined the frequency and temporal traits of whines of 20 adult companion dogs (9 males, 11 females), ranging in body mass from 3.5 to 70.0 kg and belonging to 16 breeds. Dog whines (26–71 per individual, 824 in total) were recorded in conditioned begging contexts modeled by dog owners. Whines had 3 independent fundamental frequencies: the low, the high and the ultra-high that occurred singly as monophonic calls or simultaneously as 2-voice biphonic or 3-voice polyphonic calls. From the smallest to largest dog, the upper frequency limit varied from 0.24 to 2.13 kHz for the low fundamental frequency, from 2.95 to 10.46 kHz for the high fundamental frequency and from 9.99 to 23.26 kHz for the ultra-high fundamental frequency. Within individuals, the low fundamental frequency was lower in monophonic than in biphonic whines, whereas the high fundamental frequency did not differ between those whine types. All frequency variables of the low, high, and ultra-high fundamental frequencies correlated negatively with dog body mass. For duration, no correlation with body mass was found. We discuss potential production mechanisms and sound sources for each fundamental frequency; point to the acoustic similarity between high-frequency dog whines and rodent ultrasonic calls and hypothesize that ultra-high fundamental frequencies function to allow private, “tete-a-tete” communication between members of social groups.  相似文献   

9.
10.
    
Arik Kershenbaum  Daniel T. Blumstein  Marie A. Roch  Çağlar Akçay  Gregory Backus  Mark A. Bee  Kirsten Bohn  Yan Cao  Gerald Carter  Cristiane Cäsar  Michael Coen  Stacy L. DeRuiter  Laurance Doyle  Shimon Edelman  Ramon Ferrer‐i‐Cancho  Todd M. Freeberg  Ellen C. Garland  Morgan Gustison  Heidi E. Harley  Chloé Huetz  Melissa Hughes  Julia Hyland Bruno  Amiyaal Ilany  Dezhe Z. Jin  Michael Johnson  Chenghui Ju  Jeremy Karnowski  Bernard Lohr  Marta B. Manser  Brenda McCowan  Eduardo Mercado III  Peter M. Narins  Alex Piel  Megan Rice  Roberta Salmi  Kazutoshi Sasahara  Laela Sayigh  Yu Shiu  Charles Taylor  Edgar E. Vallejo  Sara Waller  Veronica Zamora‐Gutierrez 《Biological reviews of the Cambridge Philosophical Society》2016,91(1):13-52
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well‐known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near‐future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, ‘Analysing vocal sequences in animals’. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial‐style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.  相似文献   

11.
    
“Smart”-scales are a new tool for frequent monitoring of weight change as well as weigh-in behavior. These scales give researchers the opportunity to discover patterns in the frequency that individuals weigh themselves over time, and how these patterns are associated with overall weight loss. Our motivating data come from an 18-month behavioral weight loss study of 55 adults classified as overweight or obese who were instructed to weigh themselves daily. Adherence to daily weigh-in routines produces a binary times series for each subject, indicating whether a participant weighed in on a given day. To characterize weigh-in by time-invariant patterns rather than overall adherence, we propose using hierarchical clustering with dynamic time warping (DTW). We perform an extensive simulation study to evaluate the performance of DTW compared to Euclidean and Jaccard distances to recover underlying patterns in adherence time series. In addition, we compare cluster performance using cluster validation indices (CVIs) under the single, average, complete, and Ward linkages and evaluate how internal and external CVIs compare for clustering binary time series. We apply conclusions from the simulation to cluster our real data and summarize observed weigh-in patterns. Our analysis finds that the adherence trajectory pattern is significantly associated with weight loss.  相似文献   

12.
Bats vocalize during flight as part of the sensory modality called echolocation, but very little is known about whether flying bats consistently call. Occasional vocal silence during flight when bats approach prey or conspecifics has been documented for relatively few species and situations. Bats flying alone in clutter‐free airspace are not known to forgo vocalization, yet prior observations suggested possible silent behavior in certain, unexpected situations. Determining when, why, and where silent behavior occurs in bats will help evaluate major assumptions of a primary monitoring method for bats used in ecological research, management, and conservation. In this study, we recorded flight activity of Hawaiian hoary bats (Lasiurus cinereus semotus) under seminatural conditions using both thermal video cameras and acoustic detectors. Simultaneous video and audio recordings from 20 nights of observation at 10 sites were analyzed for correspondence between detection methods, with a focus on video observations in three distance categories for which accompanying vocalizations were detected. Comparison of video and audio detections revealed that a high proportion of Hawaiian hoary bats “seen” on video were not simultaneously “heard.” On average, only about one in three visual detections within a night had an accompanying call detection, but this varied greatly among nights. Bats flying on curved flight paths and individuals nearer the cameras were more likely to be detected by both methods. Feeding and social calls were detected, but no clear pattern emerged from the small number of observations involving closely interacting bats. These results may indicate that flying Hawaiian hoary bats often forgo echolocation, or do not always vocalize in a way that is detectable with common sampling and monitoring methods. Possible reasons for the low correspondence between visual and acoustic detections range from methodological to biological and include a number of biases associated with the propagation and detection of sound, cryptic foraging strategies, or conspecific presence. Silent flight behavior may be more prevalent in echolocating bats than previously appreciated, has profound implications for ecological research, and deserves further characterization and study.  相似文献   

13.
Many vertebrates eavesdrop on alarm calls of other species, which is a remarkable ability, given geographical variation in community composition and call diversity within and among species. We used micro-geographical variation in community composition to test whether individuals recognize heterospecific alarm calls by: (i) responding to acoustic features shared among alarm calls; (ii) having innate responses to particular heterospecific calls; or (iii) learning specific alarm calls. We found that superb fairy-wrens (Malurus cyaneus) fled to cover to playback of noisy miner (Manorina melanocephala) aerial predator alarm calls only in locations where miners were present, suggesting that learning rather than acoustic structure determines response. Sites with and without miners were well within the dispersal distance of fairy-wrens, and philopatric males and dispersing females showed the same pattern, so that local genetic adaptation is extremely unlikely. Furthermore, where miners were present, fairy-wrens responded appropriately to different miner calls, implying eavesdropping on their signalling system rather than fleeing from miners themselves. Learned eavesdropping on alarm calls enables individuals to harvest ecologically relevant information from heterospecifics on an astonishingly fine spatial scale. Such phenotypic plasticity is valuable in a changing world, where individuals can be exposed to new species.  相似文献   

14.
Four juvenile rhesus monkeys (Macaca mulatta) that were conditioned to emit a discriminative vocal response underwent unilateral and bilateral lesions of anterior cingulate gyrus in stepwise sequence. Pre- and post-lesion measures of vocal response rate and acoustical features (call duration, amplitude, and fundamental frequency) were obtained for the conditioned task and for vocalization in the home colony (spontaneous vocalization). Unilateral lesions produced little consistent change in spontaneous “coo” vocalization rate and call duration. Conditioned vocalization of the monkeys exhibited no significant change in rate at this stage, although call duration was reduced significantly. Bilateral lesions produced no further modifications in acoustic properties of spontaneous calls, while the vocal rate decreased slightly. Conditioned calls were not significantly altered in acoustic features at this stage, although the discriminative vocalization rate was significantly decreased for all monkeys. The results indicate limited control over vocal motor systems by anterior cingulate cortex, while suggesting that this region participates in initiation of voluntary phonation.  相似文献   

15.
16.
研究表明,群居哺乳动物具备通过叫声进行母幼识别的机制,而有关独栖动物的母幼识别机制鲜有研究。大熊猫(Ailuropoda melanoleuca)是典型的独栖动物,原始森林是保持野生大熊猫种群数量可持续发展的必要条件,其中的大型古树提供的育幼巢穴对大熊猫幼仔的存活至关重要。但是,近年来大型古树因受人为干扰而急剧减少,致使野生成年雌性大熊猫活动领域的重叠增大,在育幼期产仔大熊猫母兽对育幼巢穴的利用产生了竞争。大熊猫幼仔的体重约为成年大熊猫的0.1%,幼仔需要母兽高度关怀才能存活和成长。叫声是0-45日龄大熊猫幼仔向其母兽传递生理需求或所处状态的主要方式。然而,母兽能否根据幼仔的叫声识别自己的后代,目前尚无定论。本研究以274条大熊猫幼仔的尖叫声为例,首先对其进行个体独特性分析,然后通过叫声回放以及母兽对所回放的两种叫声的行为反应,验证大熊猫母兽能否辨别出其亲生幼仔。结果发现,尖叫声的17个声学参数中有14个具有潜在的个体判别能力(PIC>1);进一步的判别分析结果显示,基于这17个声学参数,78.5%的尖叫声被正确分配到对应的幼仔;叫声回放实验的结果显示,母兽在行为上更倾向其亲生幼...  相似文献   

17.
    
Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.  相似文献   

18.
    
A novel approach of phenotype analysis of fermentation‐based bioprocesses based on unsupervised learning (clustering) is presented. As a prior identification of phenotypes and conditional interrelations is desired to control fermentation performance, an automated learning method to output reference phenotypes (defined as vector of biomass‐specific rates) was developed and the necessary computing process and parameters were assessed. For its demonstration, time series data of 90 Clostridium pasteurianum cultivations were used which feature a broad spectrum of solventogenic and acidogenic phenotypes, while 14 clusters of phenotypic manifestations were identified. The analysis of reference phenotypes showed distinct differences, where potential conditionalities were exemplary isolated. Further, cluster‐based balancing of carbon and ATP or the use of reference phenotypes as indicator for bioprocess monitoring were demonstrated to highlight the perks of this approach. Overall, such analysis depends strongly on the quality of the data and experimental validations will be required before conclusions. However, the automated, streamlined and abstracted approach diminishes the need of individual evaluation of all noisy dataset and showed promising results, which could be transferred to strains with comparably wide‐ranging phenotypic manifestations or as indicators for repeated bioprocesses with clearly defined target.  相似文献   

19.
Observations of antipredator behavior in two troops of free-rangingLemur catta were made during a 13-month study ofL., catta feeding ecology. Both responses to and frequency of encounters with other species were recorded. Ringtailed lemur antipredator calls differentiated between terrestrial and avian predators. L. catta responded to the Madagascar harrier hawk (Polyboroides radiatus) and the Madagascar buzzard (Buteo brachypterus) in a specific manner that differed from their reaction to the other bird of prey in the reserve, the Black kite (Milvus migrants) and to potential mammalian and reptilian predators. Encounters with avian predators peaked during the birth season and when infants were being weaned. These periods coincide with previously observed nesting periods for the Harrier hawk and the buzzard, and with times when their offspring are fledged. Both were periods whenL. catta infants might have been especially vulnerable to prédation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号