首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of the plant defence activator, acibenzolar‐S‐methyl (ASM), in inducing resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) was studied. Application of ASM induced resistance in rice to infection by Xoo. When the pathogen was clip‐inoculated to the rice plants, it caused bacterial leaf blight symptoms in the untreated control. However, in the rice plants pretreated with ASM, infection was significantly reduced. Induced systemic resistance was found to persist for up to 3 days in the pretreated rice plants. Increased phenolic content and accumulation of pathogenesis‐related (PR) proteins, viz. chitinase, β‐1,3‐glucanase and thaumatin‐like protein (TLP; PR 5) were observed in rice plants pretreated with ASM followed by inoculation with Xoo. Immunoblot analysis using rice TLP and tobacco chitinase antiserum revealed rapid induction and over‐expression of 25 and 35 kDa TLP and chitinase, respectively, in rice in response to pretreatment with ASM followed by Xoo inoculation. Based on these experiments, it is evident that induction of disease resistance in rice was accelerated following treatment with ASM.  相似文献   

2.
利用农杆菌介导的高效遗传转化系统,将白叶枯病抗性基因Xa21转入黄淮稻区主栽品种豫粳6号的胚性愈伤组织,获得转基因植株,GUS染色和PCR分析证明Xa21基因已整合到水稻基因组中,其自交T1代植株经GUS染色和白叶枯病接种鉴定呈现3:1分离,研究为培育抗白叶枯病水稻品种奠定了基础。  相似文献   

3.
Plant-derived natural bactericides and their possible applications in agriculture to control plant bacterial diseases has intensified as this approach has enormous potential to inspire and influence modern agro-chemical research. Naturally occurring and biologically active plant products such as essential oils and organic extracts could be a source of alternative classes of natural biopesticides to serve as templates for new and more effective compounds in controlling plant pathogenic micro-organisms. In the present study, the efficacy of six plants extracts from different solvent system were tested for their antibacterial activity aganist Xanthomonas oryzae pv. oryzae both in vitro and in vivo. Among these extracts, Cocculus hirsutus leaf chloroform extract exhibits significant antibacterial activity against X. oryzae pv. oryzae. Data obtained from the experiments such as minimum inhibitory concentration, effect of C. hirsutus leaf chloroform extract on the incidence of X. oryzae pv. oryzae, phytotoxicity test and effect of C. hirsutus leaf chloroform extract on seed germination and seedling vigour, along with the in vivo experiments under greenhouse conditions showed significant improvement over controls. Thus, the present study demonstrated that the C. hirsutus leaf chloroform extract posses antibacterial activity against bacterial leaf blight pathogen of rice.  相似文献   

4.
Effectors that suppress effector‐triggered immunity (ETI) are an essential part of the arms race in the co‐evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ–XopX‐mediated immune responses. Both mutations individually affect the virulence‐promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.  相似文献   

5.
Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC3F3 generation onwards. The selected plants were subjected to yield trials at the BC3F8 generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.  相似文献   

6.
Rice diseases caused by fungi, bacteria and viruses are one of the major constraints for sustainable rice (Oryza sativa L.) production worldwide. The use of resistant cultivars is considered the most economical and effective method to control rice diseases. In the last decade, a dozen resistance genes against the fungal pathogen Magnaporthe grisea and the bacterial pathogen Xanthomonas oryzae pv. oryzae have been cloned. Approximately half of them encode nuclear binding site (NBS) and leucine rich repeat (LRR)-containing proteins, the most common type of cloned plant resistance genes. Interestingly, four of them encode novel proteins which have not been identified in other plant species, suggesting that unique mechanisms might be involved in rice defense responses. This review summarizes the recent advances in cloning and characterization of disease resistance genes in rice and presents future perspectives for in-depth molecular analysis of the function and evolution of rice resistance genes and their interaction with avirulence genes in pathogens.  相似文献   

7.
Mahmood T  Jan A  Kakishima M  Komatsu S 《Proteomics》2006,6(22):6053-6065
Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonas oryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight.  相似文献   

8.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, a serious disease of rice. Xoo secretes a repertoire of cell wall‐degrading enzymes, including cellulases, xylanases and pectinases, to degrade various polysaccharide components of the rice cell wall. A secreted Xoo cellulase, CbsA, is not only a key virulence factor of Xoo, but is also a potent inducer of innate immune responses of rice. In this study, we solved the crystal structure of the catalytic domain of the CbsA protein to a resolution of 1.86 Å. The core structure of CbsA shows a central distorted TIM barrel made up of eight β strands with N‐ and C‐terminal loops enclosing the active site, which is a characteristic structural feature of an exoglucanase. The aspartic acid at the 131st position of CbsA was predicted to be important for catalysis and was therefore mutated to alanine to study its role in the catalysis and biological functions of CbsA. Intriguingly, the D131A CbsA mutant protein displayed the enzymatic activity of a typical endoglucanase. D131A CbsA was as proficient as wild‐type (Wt) CbsA in inducing rice immune responses, but was deficient in virulence‐promoting activity. This indicates that the specific exoglucanase activity of the Wt CbsA protein is required for this protein to promote the growth of Xoo in rice.  相似文献   

9.
10.
11.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in the tropics for which genetic resistance in the host plants is the only effective solution. This study aimed at identification of resistance gene combinations effective against Xoo isolates and fingerprinting of the Xoo isolates of Andaman Islands (India). Here, we report the reaction of 21 rice BB differentials possessing Xa1 to Xa21 genes individually and in different combinations to various isolates of pathogen collected from Andaman Islands. Pathological screening results of 14 isolates revealed that among individual genes tested across 2 years, Xa4, Xa7 and Xa21 conferred resistance reaction across all isolates, whereas among combinations, IRBB 50 (Xa4 + xa5), IRBB 52 (Xa4 + Xa21) and IRBB 60 (Xa4 + xa5 + xa13 + Xa21) conveyed effective resistance against tested isolates. The nature of genetic diversity among four isolates selected on the basis of geographical isolation in the islands was studied through DNA finger printing. The RAPD primers S111, S119, S1117, S1109, S1103, S109 and S105 were found to be better indicators of molecular diversity among isolates than JEL primers. The diversity analysis grouped 14 isolates into three major clusters based on disease reaction wherein isolate no. 8 was found the most divergent as well as highly virulent. The remaining isolates were classified into two distinct groups. The importance of the study in the context of transfer of resistance gene(s) in the local cultivars specifically for tropical island conditions is presented and discussed.  相似文献   

12.
Populations of Xanthomonas axonopodis pv. manihotis and X. axonopodis pv. vignicola, causal agents of cassava and cowpea bacterial blight, respectively, were quantified in insects. The pathogens were found in the faeces, the intestines, and on the legs and mandibles of Zonocerusvariegatus. Additionally, X. axonopodis pv. manihotis was localized in the insect gut by immunofluorescence microscopy. Xanthomonas axonopodis pv. manihotis survived at least 1 week in the insect intestines and at least 5 weeks in faeces kept under controlled conditions, while survival in faeces exposed to sunlight was <2 weeks. Five percentage [e.g. 5.8 × 107 colony‐forming units (CFU)/g faeces] of the fed population of X. axonopodis pv. manihotis in cassava leaves were recovered viable in the faeces after passage through the insect. The transmission of cassava bacterial blight by pathogen‐contaminated insect faeces to intact, healthy cassava leaves was demonstrated for the first time. Xanthomonas axonopodis pv. vignicola was isolated from organs and faeces of the grasshopper Pyrgomorpha cognata, the Senegalese grasshopper (Oedaleus senegalensis), bee (Apis mellifera) and three Coleoptera (Ootheca mutabilis, Mylabris spp., Exochomus troberti) collected in bacterial blight‐infected cowpea fields. Cowpea belonged to the diet of 19 grasshopper species collected in cowpea fields as demonstrated by residues in their faeces. Pathogen‐contaminated Z. variegatus initiated an epiphytic population of 8.9 × 104 CFU/g on healthy cowpea leaves. Spraying cassava and cowpea leaves with 102 and 104 CFU/ml of their respective pathogen was sufficient to evoke symptoms. A possible role of insects in the transmission of X. axonopodis pvs. vignicola and manihotis is discussed.  相似文献   

13.
14.
The molecular basis of disease resistance in rice   总被引:24,自引:0,他引:24  
The rice gene Xa21 conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo), was isolated using a map-based cloning strategy. Compared with previously cloned genes, the structure of Xa21 represents a novel class of plant disease R genes encoding a putative receptor kinase (RK). This article proposes a model for the mode of action of Xa21 and summarizes our current knowledge of the modular basis of resistance in rice to bacterial leaf blight and blast.  相似文献   

15.
16.
17.
AtNPR1基因是拟南芥系统获得抗性的一个重要调节基因,在拟南芥中过量表达AtNPR1基因能使拟南芥对细菌和真菌的抗性同时增强.为了研究在水稻中过量表达AtNPR1基因对水稻抗病性的影响,将该基因转入到广西主栽籼稻恢复系品种桂99中.经PCR验证得到了79株转基因植株,DNA斑点杂交表明ATNPR1基因已经整合到桂99染色体DNA中.Northern杂交和RT-PCR分析表明,AtNPR1基因在桂99中已经表达;同时还检测了转基因植株对水稻白叶枯病和稻瘟病的抗性,结果表明转基因植株对该两种病害的抗性均显著增强.  相似文献   

18.
Thiazole, isothiazole, thiadiazole, and their derivatives are used to control various human, animal and plant diseases. In addition to having direct anti‐microbial and anti‐fungal properties, these compounds are thought to induce host defences, but the mechanism of defence induction remains poorly understood. This article reports that the thiadiazoles of zinc thiazole and bismerthiazol induce H2O2 accumulation, up‐regulation of defence‐related genes, callose deposition and hypersensitive response‐like cell death in rice leaves infected with Xanthomonas oryaze pv. oryzae (Xoo) strain ZJ173, but not in non‐infected leaves. These defence responses in Xoo‐infected leaves were suppressed by the exogenous application of catalase, which reduces H2O2 accumulation. The application of extracellular polysaccharides (EPSs) extracted from strain ZJ173 significantly compromised rice defence against ZJ173 with or without thiadiazole treatment. The EPS‐deficient Xoo mutant ?gumH triggered a stronger defence than its parent strain ZJ173. The thiadiazole treatments reduced EPS production by strain ZJ173, but not by the thiadiazole‐resistant strain 2‐1‐1, which is thiadiazole resistant in vivo, but not in vitro; moreover, enhanced defence was not detected in thiadiazole‐treated rice inoculated with 2‐1‐1. Based on these data, we infer that zinc thiazole and bismerthiazol promote rice defence against Xoo by inhibiting the production of bacterial EPS.  相似文献   

19.
Abstract

Anthurium cut-flowers and potted plants have earned a growing marketing demand both in the local and global markets. Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae has been of major economic concern among the growers worldwide as the disease could cause heavy losses on Anthuriums and other members of the family Araceae. The disease has the potential of spreading latently exhibiting no symptoms through a range of hosts and this fact makes it a prerequisite to detect the presence of pathogen early. No reliable control method so far has been developed and therefore maintenance of strict crop sanitary measures is of great importance. 100 samples representing 30 nurseries were selected from three of the major producing districts, Gampaha, Kurunegala and Puttlam districts. The pathogen was isolated from the samples using 5% KOH test and yeast dextrose calcium carbonate medium. Isolated pathogen was inoculated to healthy Dieffenbachia cane and leaf slices and after 1 – 2 days, symptoms first developed in cane cuttings while leaves took three days for the development of symptoms. Young, tender leaf and cane slices were observed to be highly susceptible to disease. The mature cane slices and leaf cuttings were found to be resistant to the pathogen, most probably due to the non-specific mechanical impermeability of the tissues. Tender leaf and cane tissues, with their ability to get infected and develop visual symptoms relatively fast, worked best with the technique as they proved to shorten the time taken for the detection. The validity and the precision of the pathogen identification test and therefore, the method, were assessed with an indirect-ELISA pathogen-specific detection step, prior to inoculation of healthy tissues. Pathogen was detected to present in 15 samples from Kurunegala and Gampaha districts. The method confirmed its precision, reliability, cost-effectiveness and application under normal laboratory conditions.  相似文献   

20.
A cloned gene, Xa21 was transferred into five widely-used Chinese rice varieties through an Agrobacterium-mediated system, and over 110 independent transgenic lines were obtained. PCR and Southern analysis of transgenic plants revealed the integration of the whole Xa21 gene into the host genomes. The integrated Xa21 gene was stably inherited, and segregated in a 3 : 1 ratio in the selfed T1 generation when one copy of the gene was integrated in the transfor-mants. Inoculation tests displayed that transgenic T0 plants and Xa21 PCR-positive T1 plants were highly resistant to bacterial blight disease. The selected Xa21 homozygous resistant transgenic lines with desirable qualities may be propagated as new varieties or utilized in hybrid rice breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号