首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of mitochondrial DNA (mtDNA) in mitochondrial metabolism is understudied yet humans harboring specific mtDNA types age at dissimilar rates, are unequally susceptible to various diseases, and differentially adapt to various environmental conditions. This study compares mitochondrial respiration, proton leak and electron transport of Drosophila simulans males with distinct mtDNA haplogroups (siII and -III) that were collected in sympatry in Kenya. Despite the large divergence among haplogroups there is very low intrahaplogroup variation and no correlated variation in the nuclear genome has been detected. We show that repeatable bioenergetic differences exist between 11d old males harboring siII and siIII mtDNA. Males with siIII mtDNA showed higher (i) state 3 respiration rates from isolated mitochondria for both complex I and complex III based substrates, and (ii) complex IV (cytochrome c oxidase) activity. Males harboring siIII mtDNA had lower (i) hydrogen peroxide formation by both complexes I and III, (ii) proton leak from isolated mitochondria, (iii) mitochondrial ATPase activity, and (iv) mitochondrial cytochrome content. In combination, the results suggest that mitochondria isolated from siIII mtDNA harboring males have more efficient metabolism than siII mtDNA harboring males.  相似文献   

2.
In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types (siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O(2)·s(-1)·mg protein(-1)). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O(2)·s(-1)·mg protein(-1)). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.  相似文献   

3.
Recent studies have used a variety of theoretical arguments to show that mitochondrial (mt) DNA rarely evolves as a strictly neutral marker and that selection operates on the mtDNA of many species. However, the vast majority of researchers are not convinced by these arguments because data linking mtDNA variation with phenotypic differences are limited. We investigated sequence variation in the three mtDNA and nine nuclear genes (including all isoforms) that encode the 12 subunits of cytochrome c oxidase of the electron transport chain in Drosophila. We then studied cytochrome c oxidase activity as a key aspect of mitochondrial bioenergetics and four life-history traits. In Drosophila simulans, sequence data from the three mtDNA encoded cytochrome c oxidase genes show that there are 76 synonymous and two nonsynonymous fixed differences among flies harboring siII compared with siIII mtDNA. In contrast, 13 nuclear encoded genes show no evidence of genetic subdivision associated with the mtDNA. Flies with siIII mtDNA had higher cytochrome c oxidase activity and were more starvation resistant. Flies harboring siII mtDNA had greater egg size and fecundity, and recovered faster from cold coma. These data are consistent with a causative role for mtDNA variation in these phenotypic differences, but we cannot completely rule out the involvement of nuclear genes. The results of this study have significant implications for the use of mtDNA as an assumed neutral marker and show that evolutionary shifts can involve changes in mtDNA despite the small number of genes encoded in the organelle genome.  相似文献   

4.
Dean MD  Ballard KJ  Glass A  Ballard JW 《Genetics》2003,165(4):1959-1969
Drosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.  相似文献   

5.
The alpha-proteobacteria Wolbachia infect a number of insect species and influence host reproduction to favour the spread of infected females through a population. The fitness effect of this infection is important in understanding the spread and maintenance of Wolbachia within and among host populations. However, a full elucidation of fitness effect requires careful control of host genetic background. Here, I transferred a single clone of Wolbachia (the wHa strain) into three genetically distinct isofemale lines of the fly Drosophila simulans using microinjection methodology. These lines carried one of the three described mitochondrial haplogroups (siI, siII or siIII) and differ in nuclear genome as well. Population cage assays showed that wHa-infected siIII flies enjoyed a dramatic fitness benefit compared to uninfected siIII. In contrast, wHa did not affect the fitness of siI or siII flies. This study points to the importance of host-by-symbiont interaction terms that may play an important role in organismal-fitness.  相似文献   

6.
Mitochondrial DNA (mtDNA) variation in Drosophila simulans was studied to determine whether the cytoplasmic state of mtDNA heteroplasmy persists in natural populations in Réunion. For this purpose, 172 isofemale lines, newly collected from two local populations, were examined, among which three types of mtDNA (siII, siIII and siIII') were found, based on the Hpa II restriction pattern. Ten of the lines were heteroplasmic for a combination of siII and siIII, as determined by autoradiography. The same type of heteroplasmy had been noted in one of the two local populations 8 years before (Satta et al. 1988). The present results suggest that the heteroplasmic state occurs recurrently in natural populations of D. simulans in Réunion.  相似文献   

7.
Solignac M 《Genetica》2004,120(1-3):41-50
Mitochondrial DNA in the complex Drosophila melanogaster was among the first studied in metazoans. The variability of the molecule was extensively studied using restriction enzymes, gene sequence and recently sequence of the whole coding region. Within the complex, seven major haplotypes have been described, one (me) in D. melanogaster, three in D. simulans (siI, siII, siIII), two in D. mauritiana (maI, maII), and one in D. sechellia (se). The molecular distance between the haplotypes is comprised between 1 and 5%, except for siII and maI, which are virtually identical. The nucleotide diversity within each of these haplotypes is very low, varying from 0 to 0.0005. Most of the cytoplasms are infected by the bacterium Wolbachia and different bacterial strains infect cytoplasms harboring different mtDNA types. mtDNA polymorphism is discussed in relation with Wolbachia, nuclear polymorphism and speciation events.  相似文献   

8.
R S Sohal  U T Brunk 《Mutation research》1992,275(3-6):295-304
Mitochondria are the major intracellular producers of O2- and H2O2. The level of oxidative stress in cells, as indicated by the in vivo exhalation of alkanes and the concentration of molecular products of oxy-radical reactions, increases during aging in mammals as well as insects. In this paper, we discuss the relationship between mitochondrial generation of O2- and H2O2, and the aging process. The rate of mitochondrial O2- and H2O2 generation increases with age in houseflies and the brain, heart and liver of rat. This rate has been found to correspond to the life expectancy of flies and to the maximum life span potential (MLSP) of six different mammalian species, namely, mouse, rat, guinea pig, rabbit, pig and cow. In contrast, the level of antioxidant defenses provided by activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione concentration neither uniformly declines with age nor corresponds to variations in MLSP of different mammalian species. It is argued that the rate of mitochondrial O2- and H2O2 generation rather than the antioxidant level may act as a longevity determinant.  相似文献   

9.
This study aims to unravel the biogeography of a model symbiont/host system by exploiting the prediction that a symbiont will leave a signature of infection on the host. Specifically, a global sample of 1,442 Drosophila simulans from 33 countries and 64 sampling localities was employed to infer the phylogeography of the maternally inherited alpha-proteobacteria Wolbachia. Phylogenetic analyses, from three symbiont genes and 24 mtDNA genomes (excluding the A + T-rich region), showed that each of four Wolbachia strains infected D. simulans once. The global distribution and abundance of the Wolbachia strains and the three mtDNA haplogroups (D. simulans siI, siII and siIII) was then determined. Finally, network analyses of variable regions within siI (584 bp from seven additional lines) and siII (1,701 bp from 383 lines) facilitated a detailed biogeographic discussion. There is little variation in siIII and the haplogroup is restricted in its distribution. These data show how the history of an infection can be mapped by combining data from the symbiont and the host. They say little about the organismal history of the host because the mtDNA genome is a biased representation of the whole genome.  相似文献   

10.
This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 microM) of ascorbic acid, alpha-tocopherol and beta-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.  相似文献   

11.
Antimycin-inhibited bovine heart submitochondrial particles generate O2- and H2O2 with succinate as electron donor. H2O2 generation involves the action of the mitochondrial superoxide dismutase, in accordance with the McCord & Fridovich [(1969) j. biol. Chem. 244, 6049-6055] reaction mechanism. Removal of ubiquinone by acetone treatment decreases the ability of mitochondrial preparations to generate O2- and H2O2, whereas supplementation of the depleted membranes with ubiquinone enhances the peroxide-generating activity in the reconstituted membranes. Addition of superoxide dismutase to ubiquinone-reconstituted membranes is essential in order to obtain maximal rates of H2O2 generation since the acetone treatment of the membranes apparently inactivates (or removes) the mitochondrial superoxide dismutase. Parallel measurements of H2O2 production, succinate dehydrogenase and succinate-cytochrome c reductase activities show that peroxide generation by ubiquinone-supplemented membranes is a monotonous function of the reducible ubiquinone content, whereas the other two measured activities reach saturation at relatively low concentrations of reducible quinone. Alkaline treatment of submitochondrial particles causes a significant decrease in succinate dehydrogenase activity and succinate-dependent H2O2 production, which contrasts with the increase of peroxide production by the same particles with NADH as electron donor. Solubilized succinate dehydrogenase generates H2O2 at a much lower rate than the parent submitochondrial particles. It is postulated that ubisemiquinone (and ubiquinol) are chiefly responsible for the succinate-dependent peroxide production by the mitochondrial inner membrane.  相似文献   

12.
Copper-zinc superoxide dismutase (Cu,Zn-SOD) and manganese superoxide dismutase (Mn-SOD) in some model experiments in vitro demonstrated antioxidant as well as pro-oxidant properties. In the present study, yeast Saccharomyces cerevisiae lacking Mn-SOD were studied using Cu,Zn-SOD inhibitor N-N'-diethyldithiocarbamate (DDC) as a model system to study the physiological role of the yeast Cu,Zn-SOD. Yeast treatment by DDC caused dose-dependent inhibition of SOD in vivo, with 75% inhibition at 10mM DDC. The inhibition of SOD by DDC resulted in modification of carbonylprotein levels, indicated by a bell-shaped curve. The activity of glutathione reductase, isocitrate dehydrogenase, and glucose-6-phosphate dehydrogenase (enzymes associated with antioxidant) increased, demonstrating a compensatory effect in response to SOD inhibition by different concentrations of DDC. A strong positive correlation (R2=0.97) was found between SOD and catalase activities that may be explained by the protective role of SOD for catalase. All observed effects were absent in the isogenic SOD-deficient strain that excluded direct DDC influence. The results are discussed from the point of view that in vivo Cu,Zn-SOD of S. cerevisiae can demonstrate both anti- and pro-oxidant properties.  相似文献   

13.
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.  相似文献   

14.
Mitochondrial genotype affects fitness in Drosophila simulans   总被引:5,自引:0,他引:5  
James AC  Ballard JW 《Genetics》2003,164(1):187-194
Drosophila simulans is known to harbor three distinct mitochondrial DNA (mtDNA) haplotype groups (siI, -II, and -III) with nearly 3.0% interhaplotypic divergence but <0.06% intrahaplotypic diversity. With the large amount of genetic variation in this system, the potential power to detect intraspecific fitness differences in fly lines that carry distinct haplotypes is great. We test three life-history traits on fly lines with known sequence differences in the mtDNA genome after controlling the nuclear genome by backcrossing. We find that flies with the siI haplotype are fastest developing and have the lowest probability of surviving to three experimental periods (2-6, 12-17, and 34-39 days of age). Wild-type males with siIII mtDNA were more active while disruption of specific coadapted nucleo-mitochondrial complexes caused a significant decrease in activity. These results are discussed in the context of the geographic distribution of each haplotype.  相似文献   

15.
Various proapoptotic stimuli increase the production of superoxide and H(2)O(2) by mitochondria. Whereas superoxide impairs mitochondrial function and is removed by Mn(2+)-dependent superoxide dismutase, the role and metabolism of mitochondrial H(2)O(2) during apoptosis have remained unclear. The effects on apoptotic signaling of depletion of peroxiredoxin (Prx) III, a mitochondrion-specific H(2)O(2)-scavenging enzyme, have now been investigated by RNA interference in HeLa cells. Depletion of Prx III resulted in increased intracellular levels of H(2)O(2) and sensitized cells to induction of apoptosis by staurosporine or TNF-alpha. The rates of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation were increased in Prx III-depleted cells, and these effects were reversed by ectopic expression of Prx III or mitochondrion-targeted catalase. Depletion of Prx III also exacerbated damage to mitochondrial macromolecules induced by the proapoptotic stimuli. Our results suggest that Prx III is a critical regulator of the abundance of mitochondrial H(2)O(2), which itself promotes apoptosis in cooperation with other mediators of apoptotic signaling.  相似文献   

16.
High rates of glucose metabolism and mitochondrial electron transport have been associated with increased mitochondrial production of reactive oxygen species (ROS). This mechanism was also proposed as a possible cause for dysfunction and death of pancreatic beta cells exposed to high glucose levels. We examined whether high rates of glucose metabolism increase ROS production in purified rat beta cells. Glucose up to 20 mm did not stimulate H(2)O(2) or superoxide production, whereas it dose-dependently increased cellular NAD(P)H and FADH(2) levels with an EC(50) around 8 mm. On the contrary, glucose concentration-dependently suppressed H(2)O(2) and superoxide formation, with a major effect between 0 and 5 mm, parallel to an increase in cellular NAD(P)H levels. This suppressive effect was more marked in beta cells with higher NAD(P)H responsiveness to glucose; it was not observed in glucagon-containing alpha cells, which lacked a glucose-induced increase in NAD(P)H. Suppression was also induced by the mitochondrial substrates leucine and succinate. Experiments with electron transport chain inhibitors indicate a role of respiratory complex I in ROS production at low mitochondrial activity and low NADH levels. Superoxide production at low glucose is potentially cytotoxic, because scavenging by the superoxide dismutase mimetic agent manganese(III)tetrakis(4-benzoic acid)porphyrin was found to reduce the rate of beta cell apoptosis. Analysis of islets cultured at 20 mm glucose confirmed that this condition does not induce ROS production in beta cells as a result of their increased rates of glucose metabolism. Our study indicates the need of beta cells for basal nutrients maintaining mitochondrial NADH production at levels that suppress ROS accumulation from an inadequate respiratory complex I activity and thus inhibit a potential apoptotic pathway.  相似文献   

17.
The total rate of mitochondrial O2- production in the presence of NADH as substrate increased from 200 to 1340 pmol/min per axis between 2 and 30 h of imbibition. The activities of the enzymes involved in hydroperoxide metabolism, e.g., superoxide dismutase, catalase, peroxidase and glutathione and ascorbate peroxidases, markedly changed during the germination of soybean embryonic axes. Superoxide dismutase was the enzymatic activity affected the most during the initial stages of germination. Intracellular O2- steady-state concentration, calculated from the rate of O2- production and superoxide dismutase activity, showed a 2-fold increase from 2 x 10(-8) M to 4 x 10(-8) M in germination phase I, declined in phase II to 2 x 10(-8) M and remained constant over the rest of the incubation period. The reaction of H2O2 and luminol catalyzed by Co2+ was utilized to measure H2O2 diffused out of the soybean axes after 5 to 10 min of incubation. The catalase-sensitive luminol emission of diffusates prepared from axes previously imbibed from 2 to 30 h corresponded to a H2O2 intracellular steady-state concentration in the range of 0.3 to 0.9 microM. The activity of metal-containing antioxidant enzymes was determined in the extracellular fluid. Cell wall peroxidase activity increased from 10 to 300 mumol/min per mg protein and appears as a potentially important pathway for H2O2 utilization. Hydrogen peroxide metabolism in soybean embryonic axes during early inhibition appears to have the following main features: (a) mitochondrial membranes are the most important source of cytosolic O2- and H2O2; (b) H2O2 is regulated at a steady-state concentration of 0.3-0.9 microM; (c) catalase is the main enzyme in terms of H2O2 utilization; (d) H2O2 exo-diffusion is quantitatively important destiny of intracellular H2O2; and (e) extracellular peroxidase located at the cell wall affords an enzymatic system able to use diffused H2O2.  相似文献   

18.
The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA.  相似文献   

19.
Exercise provides cardioprotection against ischemia-reperfusion injury, a process involving mitochondrial reactive oxygen species (ROS) generation and calcium overload. This study tested the hypotheses that isolated mitochondria from hearts of endurance-trained rats have decreased ROS production and improved tolerance against Ca(2+)-induced dysfunction. Male Fischer 344 rats were either sedentary (Sed, n = 8) or endurance exercise trained (ET, n = 11) by running on a treadmill for 16 wk (5 days/wk, 60 min/day, 25 m/min, 6 degrees grade). Mitochondrial oxidative phosphorylation measures were determined with glutamate-malate or succinate as substrates, and H(2)O(2) production and permeability transition pore (PTP) opening were determined with succinate. All assays were carried out in the absence and presence of calcium. In response to 25 and 50 microM CaCl(2), Sed and ET displayed similar decreases in state 3 respiration, respiratory control ratio, and ADP:O ratio. Ca(2+)-induced PTP opening was also similar. However, H(2)O(2) production by ET was lower than Sed (P < 0.05) in the absence of calcium (323 +/- 12 vs. 362 +/- 11 pmol.min(-1).mg protein(-1)) and the presence of 50 microM CaCl(2) (154 +/- 3 vs. 197 +/- 7 pmol.min(-1).mg protein(-1)). Rotenone, which blocks electron flow from succinate to complex 1, reduced H(2)O(2) production and eliminated differences between ET and Sed. Mitochondrial superoxide dismutase and glutathione peroxidase were not affected by exercise. Catalase activity was extremely low but increased 49% in ET (P < 0.05). In conclusion, exercise reduces ROS production in myocardial mitochondria through adaptations specific to complex 1 but does not improve mitochondrial tolerance to calcium overload.  相似文献   

20.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号