首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirty inbred lines representing a wide range of early-maturing European elite germ plasm of maize (Zea mays L.) were assayed for RFLPs using 203 clone-enzyme combinations (106 DNA clones with restriction enzymes EcoR1 and HindIII). The genetic materials comprised 14 flint, 12 dent, and 4 lines of miscellaneous origin. Objectives were to (1) characterize the genetic diversity for RFLPs in these materials, (2) compare the level of genetic diversity found within and between the flint and the dent heterotic groups, and (3) examine the usefulness of RFLPs for assigning inbreds to heterotic groups. All but two DNA clones yielded polymorphism with at least one restriction enzyme. A total of 82 and 121 clone-enzyme combinations gave single-banded and multiple-banded RFLP patterns, respectively, with an average of 3.9 and 7.7 RFLP patterns per clone-enzyme combination across all 30 inbreds, respectively. Genetic similarity (GS) between lines, estimated from RFLP data as Dice's similarity coefficient, showed considerable variation (0.32 to 0.58) among unrelated inbreds. The mean GS for line combinations of type flint x dent (0.41) was significantly smaller than for unrelated flint lines (0.46) and dent lines (0.46), but there was considerable variation in GS estimates of individual line combinations within each group. Cluster and principal coordinate analyses based on GS values resulted in separate groupings of flint and dent lines in accordance with phylogenetic information. Positioning of lines of miscellaneous origin was generally consistent with expectations based on known breeding behavior and pedigrees. Results from this study corroborated that RFLP data can be used for assigning inbreds to heterotic groups and revealing pedigree relationships among inbreds.  相似文献   

2.
 The challenge to maize breeders is to identify inbred lines that produce highly heterotic hybrids. In the present study we surveyed genetic divergence among 13 inbred lines of maize using DNA markers and assessed the relationship between genetic distance and hybrid performance in a diallel set of crosses between them. The parental lines were assayed for DNA polymorphism using 135 restriction fragment length polymorphisms (RFLPs) and 209 amplified-fragment polymorphisms (AFLPs). Considerable variation among inbreds was detected with RFLP and AFLP markers. Moreover AFLPs detect polymorphisms more efficiently in comparison to RFLPs, due to the larger number of loci assayed in a single PCR reaction. Genetic distances (GDs), calculated from RFLP and AFLP data, were greater among lines belonging to different heterotic groups compared to those calculated from lines of the same heterotic group. Cluster analysis based on GDs revealed associations among lines which agree with expectations based on pedigree information. The GD values of the 78 F1 crosses were partioned into general (GGD) and specific (SGD) components. Correlations of GD with F1 performance for grain yield were positive but too small to be of predictive value. The correlations of SGDs, particularly those based on AFLP data, with specific combining-ability effects for yield may have a practical utility in predicting hybrid performance. Received: 15 August 1997 / Accepted: 19 September 1997  相似文献   

3.
Summary Three flint and three dent maize (Zea mays L.) inbred lines, their possible F1 crosses, F2 and backcross progenies, and all possible three-way crosses were evaluated in a three-year experiment for yield, ear moisture, and plant height. The purpose was to estimate genetic parameters in European breeding materials from (i) generation means analysis, (ii) diallel analysis of generation means, and (iii) analysis of F1 and three-way cross hybrids. Method (i) was based on the F-metric model and methods (ii) and (iii) on the Eberhart-Gardner (1966) genetic model; both models extended for heterotic maternal effects.Differences among generation means for yield and plant height were mainly attributable to dominance effects. Epistatic effects were significantly different from zero in a few crosses and considerably reduced heterosis in both traits. Additive x additive and domiance x dominance effects for yield were consistently positive and negative, respectively. Significant maternal effects were established to the advantage of generations with a heterozygous seed parent. In the diallel analysis, mean squares for dominance effects were greater than for additive effects for yield and plant height but smaller for ear moisture. Though significant for yield and plant height, epistatic variation was small compared to additive and dominance variation. Estimates of additive x additive epistasis for yield were significantly negative in 11 of 15 crosses, suggesting that advantageous gene combinations in the lines had been disrupted by recombination in the segregating generations. The analysis of hybrids supported the above findings regarding the analysis of variance. However, the estimates of additive x additive epistasis for yield were considerably smaller and only minimally correlated with those from the diallel analysis. Use of noninbred materials as opposed to materials with different levels of inbreeding is considered the main reason for the discrepancies in the results.  相似文献   

4.
It has been claimed that the system that delivers the products of plant breeding reduces the diversity of cultivated varieties leading to an increased genetic vulnerability. The main goal of our study was to monitor the temporal trends in genetic diversity over the past five decades among maize cultivars with the largest acreage in Central Europe. Our objectives were to (1) investigate how much of the genetic diversity present in important adapted open-pollinated varieties (OPVs) has been captured in the elite flint germplasm pool, (2) examine changes in the genetic diversity among the most important commercial hybrids as well as in their dent and flint parents, (3) analyze temporal changes in allele frequencies between the dent and flint parental inbreds, and (4) investigate linkage disequilibrium (LD) trends between pairs of loci within the set of parental dent and flint lines. We examined 30 individuals of five prominent OPVs from Central Europe, 85 maize hybrids of economic importance, and their dent and flint parental components with 55 SSRs. LD was significant at probability level P=0.01 for 20.2% of the SSR marker pairs in the 82 dent lines and for 17.2% in the 66 flint lines. The dent and flint heterotic groups were clearly separated already at the beginning of hybrid breeding in Central Europe. Furthermore, the genetic variation within and among varieties decreased significantly during the five decades. The five OPVs contain numerous unique alleles that were absent in the elite flint pool. Consequently, OPVs could present useful sources for broadening the genetic base of elite maize breeding germplasm.  相似文献   

5.
Flint maize, Zea mays L., varieties provide some interesting agronomic characteristics and kernels that possess a better ability than other kernels for developing high-quality flour. The pink stem borer, Sesamia nonagrioides Lefebvre, is an important constraint for the maize crop in Mediterranean regions. The objective of this work was to identify a "flint x flint" heterotic pattern that would perform well under artificial infestation by S. nonagrioides. A 10-population diallel was evaluated under infestation by S. nonagrioides in 2 yr. Variety effects were the only significant effects involved in stem and ear resistance to S. nonagrioides attack. Variety effects and average heterosis effects were the only significant effects for grain yield under artificial infestation conditions. Considering variety effects and cross-performance, the heterotic pattern Basto/Enano levantixo x Longfellow (BA/EL x LO) would be recommended for obtaining flint maize hybrids tolerant to S. nonagrioides attack because BA/EL had the most favorable variety effects for stem resistance, LO exhibited the most positive variety effects for grain yield, and the cross BA/EL x LO yielded significantly more than the remaining crosses.  相似文献   

6.

Key message

Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs.

Abstract

Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees–Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees–Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.
  相似文献   

7.
Summary Changes that may have occurred over the past 50 years of hybrid breeding in maize (Zea maize L.) with respect to heterosis for yield and heterozygosity at the molecular level are of interest to both maize breeders and quantitative geneticists. The objectives of this study were twofold: The first, to compare two diallels produced from six older maize inbreds released in the 1950's and earlier and six newer inbreds released during the 1970's with respect to (a) genetic variation for restriction fragment length polymorphisms (RFLPs) and (b) the size of heterosis and epistatic effects, and the second, to evaluate the usefulness of RFLP-based genetic distance measures in predicting heterosis and performance of single-cross hybrids. Five generations (parents, F1; F2, and backcrosses) from the 15 crosses in each diallel were evaluated for grain yield and yield components in four Iowa environments. Genetic effects were estimated from generation means by ordinary diallel analyses and by the Eberhart-Gardner model. Newer lines showed significantly greater yield for inbred generations than did older lines but smaller heterosis estimates. In most cases, estimates of additive x additive epistatic effects for yield and yield components were significantly positive for both groups of lines. RFLP analyses of inbred lines included two restriction enzymes and 82 genomic DNA clones distributed over the maize genome. Eighty-one clones revealed polymorphisms with at least one enzyme. In each set, about three different RFLP variants were typically found per RFLP locus. Genetic distances between inbred lines were estimated from RFLP data as Rogers' distance (RD), which was subdivided into general (GRD) and specific (SRD) Rogers' distances within each diallel. The mean and range of RDs were similar for the older and newer lines, suggesting that the level of heterozygosity at the molecular level had not changed. GRD explained about 50% of the variation among RD values in both sets. Cluster analyses, based on modified Rogers' distances, revealed associations among lines that were generally consistent with expectations based on known pedigree and on previous research. Correlations of RD and SRD with f1 performance, specific combining ability, and heterosis for yield and yield components, were generally positive, but too small to be of predictive value. In agreement with previous studies, our results suggest that RFLPs can be used to investigate relationships among maize inbreds, but that they are of limited usefulness for predicting the heterotic performance of single crosses between unrelated lines.Joint contribution from Cereal and Soybean Research Unit, USDA, Agricultural Research Service and Journal Paper no. J-13929 of the Iowa Agric and Home Economics Exp Stn, Ames, IA 50011. Projects no. 2818 and 2778A.E.M. is presently at the Iowa State University on leave from University of Hohenheim, D-7000 Stuttgart 70, Federal Republic of Germany  相似文献   

8.
Summary The identification of inbred lines useful for improvement of an elite single cross hybrid is an essential part of a pedigree maize (Zea mays L.) breeding program. The objectives of this study were to identify lines that could be useful for improvement of hybrid B73 × Mo17 and to relate the values of estimators of new favorable alleles with test cross yields. Crosses of parents of hybrid B73 × Mo17 with 10 public lines from the United States (US), and 14 Maize Research Institute Zemun Polje proprietary lines (lines per se, and test crosses from 3 F2 populations) were evaluated at 4 locations in Yugoslavia in 1986. Significant differences in grain yield were found among lines in minimally biased estimates of favorable alleles (G) present in a donor inbred but not present in a B73 × Mo17, in minimum upper bound (UBND) estimates and in predicted three-way performance (PTC). Twenty-one lines had a significant number of dominant favorable alleles for grain yield not present in B73 × Mo17. The highest values for all estimators of new favorable alleles were found for donor lines which belonged to different heterotic groups than the B73 and Mo17. For most of the inbreds, the (C + F) – (D + E) statistics agreed with predigree information. Simultaneous increases in grain yield and decreases in grain moisture content for B73 × Mo17 are possible with several donor inbred lines. All of the lines with a high number of new favorable alleles for grain yield not present in B73 × Mo17 had negative D (F)-G values for low plant height. Line N152 had the most new favorable alleles for grain yield not present in single cross B73 × Mo17. Population (N152 × Mo17) F2 had the highest difference of observed test cross means from check mean, the most test crosses with significantly higher yields than the check, and the largest estimate of number of segregating loci.This project was partly supported by the United States Department of Agriculture and Republic Funds for Scientific Work of Serbia through funds available to the United States-Yugoslav Joint Board on Scientific and Technological Cooperation. Project No. JFP 662  相似文献   

9.
Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic groups. The mean value (0.69) of the polymorphic-index content (PIC) for the SSR loci provided sufficient discrimination-ability for the assessment of genetic diversity among the inbred lines. The correlation between the genetic-similarity (GS) estimates and the coancestry coefficient was significant (r = 0.70). The average-linkage (UPGMA) cluster analysis and principal-coordinate analysis (PCOA) for a matrix of the GS estimates showed that the Northern flint inbred lines bred in Japan were similar to a Canadian Northern flint inbred line CO12 and a European flint inbred line F283, and that dent inbred lines bred in Japan were similar to BSSS inbred lines such as B73. These associations correspond to the known pedigree records of these inbred lines. The results indicate that SSR analysis is effective for the assessment of genetic diversity among maize inbred lines and for the assignment of inbred lines to heterotic groups.  相似文献   

10.
Segregation for self-fertility has been studied in progenies from the crosses of self-sterile (SS) plants with interline hybrids obtained by a diallel scheme of pollinations between seven self-fertile (SF) lines (nos. 2–8) and with F1 (SS plant x SF line) hybrids. All the offspring families from the SS plant x F1 (SS plant x SF line) crosses demonstrated a 1SF1SS segregation. The crosses of SS plants with some interline hybrids gave only self-fertile plants, whereas the crosses with other interline hybrids gave a segregation of 3SF:1SS expected in the case of digenic segregation. The data obtained permitted us to identify three different S loci (S1, S2, S5) and to estimate the genotypes of self-fertile lines for their Sf alleles: lines 5, 6, 7 and 8 are S1f/S1f S2n/S2n S5m/S5m, line 4 is S1n/S1n S2f/S2f S5m/S5m, and lines 2 and 3 are S1n/S1n S2m/S2m S5f/S5f(Sn, Sm designate active alleles of the incompatibility genes). The identification of the particular S gene which is presented by the Sf allele in each line has been made on the basis of our data concerning the linkage of the Sf mutation with isozyme markers of particular rye chromosomes, which is reported in an accompanying paper.  相似文献   

11.
Summary Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24–48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a known heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during the I1 generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross F1 hybrids and also of 3-and 4-way hybrids.Department of Plant Breeding and Biometry paper No. 690  相似文献   

12.
Summary Complex hybrids containing genomes from three different Solanum tuberosum Groups were synthesized (3-way hybrids), utilizing 2n gametes in 4x–2x crosses. Ten such families were compared to nine analogous two-Group (2-way) hybrid families and nine (1-way) families representing conventional Gp. Tuberosum breeding materials. The three types of crosses, representing three descending levels of heterozygosity, were placed in four field trials.The 3-way hybrids were never significantly superior to the 2-way hybrids for vigor, yield, or tuber type. When yields were adjusted for maturity differences, the 3-way hybrids tended to be inferior to the 2-way hybrids for yield. This suggests that there may be a heterotic threshold in the cultivated potato, beyond which point more heterozygosity does not result in greater vigor or more yield.While the 2-way and 3-way hybrids did not significantly differ from each other, they both dramatically surpassed the conventional 1-way crosses for vigor and yield (42%). The evidence of a possible heterotic threshold indicates that more sophisticated methods such as cell fusion and bilateral sexual polyploidization may not be necessary to exploit the full potential of the hybrid approach in the potato. A simple and direct 2-way hybridization approach may be optimal, or at least would seem comparable with other hybrid approaches, and is a technology ready for immediate and widespread implementation.  相似文献   

13.
RFLP markers have proven to be a reliable and highly informative tool for characterizing genetic diversity in maize. Joint analysis of inbred lines and populations should provide valuable information with respect to (1) a better understanding of the genetic basis of present elite germplasm and (2) the identification of populations that may prove to be useful sources of genetic diversity for breeding programs. Sixty-two inbred lines of known heterotic groups and ten maize populations, some of them significant contributors to the genetic basis of the heterotic groups, were assayed at 28 RFLP loci. Joint data analyses first underlined that the populations displayed a large number of alleles that were absent in the set of inbred lines. Associations among inbreds and populations further proved consistent with pedigree data of the inbreds and provided new information on the genetical basis of heterotic groups. In particular, European flint inbreds were revealed to be as close to the Northeastern U.S. flint population studied as to the typical European populations. These results advocate the analysis of larger sets of populations by means of molecular markers in order to (1) gain insight into the history of maize germplasm and (2) set up appropriate strategies for the use of genetic resources in breeding programs. Received: 23 February 1998 / Accepted: 5 February 1999  相似文献   

14.
Summary The evaluation of germplasm to identify its potential as a source of new favorable alleles is a time-consuming phase of maize hybrid breeding programs. The objective of this paper was to study the relationship between allozyme diversity and quantitative estimators of the relative number of new favorable alleles for grain yield, present in donor lines but not present in the elite hybrid. Twenty-two maize inbred lines representing heterotic groups from the United States (US) and Yugoslavia (YU) were used as donors to estimate the presence of new favorable alleles for grain yield improvement for the hybrid B73 x Mo17. In a second experiment, a 15-line diallel was grown, and 13 single crosses differing in allozyme relatedness measure (ARM) and heterotic grouping were considered as targets to be improved by the remaining 13 lines. Minimally biased estimates of new favorable alleles for grain yield (G) and ARM values were made for all donor lines within each target hybrid. Donor lines were grouped in four allozyme-pedigree classes for each target hybrid to compare the effect of allozyme diversity with pedigree diversity. Pedigree dissimilarities had significant effects on G estimates. Dissimilar pedigree classes had higher G estimates than similar pedigree classes. Allozyme differences between donor inbred lines and target hybrids had inconsistent effects on G estimates. Significant differences in G estimates among allozyme classes were found for 31% of the target hybrids. Classes with similar allozymes had higher G estimates more frequently than classes with disimilar allozymes. Correlation coefficients between G estimates and ARM values were low and not significant for 12 of the 14 target hybrids.This project was partially supported by the USDA and Republic Funds for Scientific work of Serbia through funds available to the United States-Yugoslav Joint Board of Scientific and Technological Cooperation, Project JFP 662  相似文献   

15.
Recombination of selected genotypes plays a key role in plant breeding for generating new base populations. We investigated the influence of recombination in two parent populations on the means and combining ability variances of their hybrid population by (1) quantitative genetic theory and (2) experiments with maize. The two parent populations were founded by four early flint and four early dent inbred lines, respectively. Each population was studied in three generations: Syn-0, the four inbred lines themselves; Syn*-1, the six intrapool single crosses (SC); and Syn*-2, the three intrapool double crosses (DC). Four interpool hybrid populations were created: (1) all 16 SC and (2) all 36 DC were produced from generations Syn-0 and Syn*-1, respectively, (3) 168 biparental progenies (BIP) of type flint x dent (female x male), and (4) 168 BIP of type dent x flint were produced according to NC-design I with randomly sampled plants of generation Syn*-2. The half-sib and full-sib families obtained in this manner were evaluated for grain yield, dry matter concentration and plant height. According to theoretical results, differences in the population means of these hybrid populations indicate the presence of various types of epistasis. Changes in combining ability variances from SC to DC reflect different levels of parental inbreeding (F = 1 vs F = 0), whereas changes from DC to BIP only reflect the effects of recombination and are attributable to covariances between additive and dominance effects caused by linkage disequilibrium in the Syn-0 generations. The experimental results showed a significant decline in yield from DC to BIP due to a loss of gene combinations with favourable epistatic effects. Estimates of sigma(2)(GCA) attributable to flint or dent lines decreased or remained unchanged from SC to DC, but generally increased in the BIP populations. The consequences of these trends for developing improved interpool hybrids are discussed.  相似文献   

16.
Summary The meiotic identification of nine pairs of chromosomes at metaphase I of meiosis of Triticum aestivum (B genome, 4A and 7A) has been achieved using a Giemsa C-banding technique. As a result, the analysis of the pairing of each chromosome arm in disomic and monosomic intervarietal hybrids between Chinese Spring and the Spanish cultivar Pané 247 could be carried out. Differences in the chiasmata frequencies per chromosome arm cannot be explained on the basis of relative arm lengths only. Possible effects of arm-to-arm heterochromatic differences on meiotic pairing are discussed.  相似文献   

17.
 Prediction of the means and genetic variances in segregating generations could help to assess the breeding potential of base populations. In this study, we investigated whether the testcross (TC) means and variances of F3 progenies from F1 crosses in European maize can be predicted from the TC means of their parents and F1 crosses and four measures of parental genetic divergence: genetic distance (GD) determined by 194 RFLP or 691 AFLPTM 1 markers, mid-parent heterosis (MPH), and absolute difference between the TC means of parents (∣P1−P2∣). The experimental materials comprised six sets of crosses; each set consisted of four elite inbreds from the flint or dent germplasm and the six possible F1 crosses between them, which were evaluated for mid-parent heterosis. Testcross progenies of these materials and 20 random F3 plants per F1 cross were produced with a single-cross tester from the opposite heterotic group and evaluated in two environments. The characters studied were plant height, dry matter content and grain yield. The genetic distance between parent lines ranged between 0.17 and 0.70 for RFLPs and between 0.14 and 0.57 for AFLPs in the six sets. Testcross-means of parents, F1 crosses, and F3 populations averaged across the six crosses in a particular set generally agreed well for all three traits. Bartlett’s test revealed heterogeneous TC variances among the six crosses in all sets for plant height, in four sets for grain yield and in five sets for dry matter content. Correlations among the TC means of the parents, F1 crosses, and F3 populations were highly significant and positive for all traits. Estimates of the TC variance among F3 progenies for the 36 crosses showed only low correlations with the four measures of parental genetic divergence for all traits. The results demonstrated that for our material, the TC means of the parents or the parental F1 cross can be used as predictors for the TC means of F3 populations. However, the prediction of the TC variance remains an unsolved problem. Received: 4 August 1997 / Accepted: 17 November 1997  相似文献   

18.
19.
Linkage disequilibrium (LD) at the adh1 locus was examined in two sets of maize inbreds. A set of 32 was chosen to represent most of the genetic diversity in the cultivated North American elite maize breeding pool. A second set of 192 inbreds was chosen to sample more deeply the two major heterotic groups in elite maize germplasm. Analysis of several loci in the vicinity of the adh1 gene shows that LD as measured by D and r2 extends greater than 500 kbp in this germplasm. The presence of this exceptionally long segment of high LD may be suggestive of selection acting on one of the genes in the vicinity of adh1 or of a locally reduced rate of recombination.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

20.
Maize (Zea mays L.) breeders are concerned about the narrowing of the genetic base of elite germplasm. To reverse this trend, elite germplasm from other geographic regions can be introgressed, but due to lack of adaptation it is difficult to assess their breeding potential in the targeted environment. The objectives of this study were to (1) investigate the relationship between European and US maize germplasm, (2) examine the suitability of different mega-environments and measures of performance to assess the breeding potential of exotics, and (3) study the relationship of genetic distance with mid-parent heterosis (MPH). Eight European inbreds from the Dent and Flint heterotic groups, 11 US inbreds belonging to Stiff Stalk (SS), non-Stiff Stalk (NSS), and CIMMYT Pool 41, and their 88 factorial crosses in F1 and F2 generations were evaluated for grain yield and dry matter concentration. The experiments were conducted in three mega-environments: Central Europe (target mega-environment), US Cornbelt (mega-environment where donor lines were developed), and Southeast Europe (an intermediate mega-environment). The inbreds were also fingerprinted with 266 SSR markers. Suitable criteria to identify promising exotic germplasm were F1 hybrid performance in the targeted mega-environment and F1 and parental performance in the intermediate mega-environment. Marker-based genetic distances reflected relatedness among the inbreds, but showed no association with MPH. Based on genetic distance, MPH, and F1 performance, we suggest to introgress SS germplasm into European Dents and NSS into European Flints, in order to exploit the specific adaptation of European flint germplasm and the excellent combining ability of US germplasm in European maize breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号