首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The D1 and D2 proteins of the photosystem II (PSII) reaction center are stable in the dark, while rapid degradation occurs in the light. Thus far, a quantitative correlation between degradation and photon fluences has not been determined. In Spirodela oligorrhiza, D1-D2 degradation increases with photon flux. We find that kinetics for D2 degradation mirror those for D1, except that the actual half-life times of the D2 protein are about three times larger than those of the D1. The degradation ratio, D2/D1, is fluence independent, supporting the proposal [Jansen, M.A.K., Greenberg, B.M., Edelman, M., Mattoo, A.K. & Gaba, V. (1996), Photochem. Photobiol. 63, 814-817] that degradation of the two proteins is coupled. It is commonly conceived that D1 degradation is predominantly associated with photon fluences that are supersaturating for photosynthesis. We now show that a fluence as low as 5 mumol.m-2.s-1 elicited a reaction constituting > 25% of the total degradation response, while > 90% of the degradation potential was attained at intensities below saturation for photosynthesis (approximately 750 mumol.m-2.s-1). Thus, in intact plants, D1 degradation is overwhelmingly associated with fluences limiting for photosynthesis. D1 degradation increases with photon flux in a complex, multiphasic manner. Four phases were uncovered over the fluence range from 0-1600 mumol.m-2.s-1. The multiphasic saturation kinetics underscore that the D1 and D2 degradation response is complex, and emanates from more than one parameter. The physiological processes associated with each phase remain to be determined.  相似文献   

3.
The surface and the cross section of awns of wheat and barley were examined by scanning electron microscopy,ultrastructure of cells were observed under a transmisson electron microscope and the photosynthetic rates were measured with an oxygen, electrode and infra-red CO2 analyser. The main results were as follows :The cross section of wheat awn appeared to be acutely trianglular whereas that of barley awn was obtusely triangular. There were rows of stomota on either side of epidermis in both wheat and barley awns. Under the stomatic band there were green tissues. The green cells in the awn were differentiated from the parenchyma cells . The mature green cells possessed papillae which were rich in chloroplasts and mitochondria. The tamella system in chloroplasts was well developed and contained many starch grains. There were three vascular bundles in each awn. The sheath cells near the green tissues contained chloroplasts. The photosynthate in the green cells might pass through the sheath cells and companion cells to sieve elements. The highest photosynthetic rate of the awn was seen at the flowering stage ,reaching about 20 μmol CO2·m-2·s-1. The light compensation point was 70—80 μE·m-2· s-1. The light saturation point was about 1500 μE·m-2·s-1. The CO2 compensation point was 50—60 ppm and the CO2 saturation point was about 900ppm . The photosynthetic rate and stomatal conductance were easily effected by CO2 concentration, light intensity and the duration of illumination . There was a positive correlation between the photosynthetic rate and the chloro-phyll content in the awns. The CO2-releasing rate in photorespiration of awn was about 4–5 μmol CO2·m-2·s-1.  相似文献   

4.
A K Janoudi  K L Poff 《Plant physiology》1993,101(4):1175-1180
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.  相似文献   

5.
6.
Photometric analysis of chloroplast movements in various phytochrome (phy) mutants of Arabidopsis showed that phyA, B, and D are not required for chloroplast movements because blue light (BL)-dependent chloroplast migration still occurs in these mutants. However, mutants lacking phyA or phyB showed an enhanced response at fluence rates of BL above 10 micromol m-2 s-1. Overexpression of phyA or phyB resulted in an enhancement of the low-light response. Analysis of chloroplast movements within the range of BL intensities in which the transition between the low- and high-light responses occur (1.5-15 micromol m-2 s-1) revealed a transient increase in light transmittance through leaves, indicative of the high-light response, followed by a decrease in transmittance to a value below that measured before the BL treatment, indicative of the low-light response. A biphasic response was not observed for phyABD leaves exposed to the same fluence rate of BL, suggesting that phys play a role in modulating the transition between the low- and high-light chloroplast movement responses of Arabidopsis.  相似文献   

7.
8.
苋菜的光合特性   总被引:4,自引:0,他引:4  
孙谷畴   《广西植物》1988,(3):279-284
宽菜Amaranthus cruentus cv.生长在调控的温室条件。在光强0至800μmol.m~(-2)S~(-1),光合速率(PN,μmol.CO_2m~(-2)、s~(-1))随光强(PFD,μmol、m~(-2)、s~(-1))增高而增大,其关系为PN=56.82 PFD×10~(-3)—2.13。光补偿点为60μmol.m~(-2)、s~(-1)。叶片在1400 μmol.m~(-2)、s~(-1)达到光合光饱和点。在叶温35℃,叶片/空气水蒸汽压陡度20 m Pa、Pa~(-1)和外界CO_2浓度340μ1、1~(-1),光饱和光合速率为51.63±4.90μ mol.CO_2、m~(-2)、S~(-1)。在光强0至600μmol.m~(-2)、s~(-1),气孔传道率随光强增高而增大。光强高于600μmol.m~(-2)、s~(-1),气孔传道率变化较小。细胞间CO_2浓度为120μ1.1~(-1)由于细胞间CO_2浓度在光合速率——CO_2关系曲线的转折点,可能表明光合作用不受气孔限制。结果表明,苋菜适于高光强环境生长,在干旱条件下具有高的光合速率。  相似文献   

9.
Recent studies have shown that blue light-specific stomatal opening is reversed by green light and that far-red light can be used to probe phytochrome-dependent stomatal movements. Here, blue-green reversibility and far-red light were used to probe the stomatal responses of the npq1 mutant and the phot1 phot2 double mutant of Arabidopsis. In plants grown at 50 micromol m-2 s-1, red light (photosynthetic)-mediated opening in isolated stomata from wild type (WT) and both mutants saturated at 100 micromol m-2 s-1. Higher fluence rates caused stomatal closing, most likely due to photo-inhibition. Blue light-specific opening, probed by adding blue light (10 micromol m-2 s-1) to a 100 micromol m-2 s-1 red background, was found in WT, but not in npq1 or phot1 phot2 double mutant stomata. Under 50 micromol m-2 s-1 red light, 10 micromol m-2 s-1 blue light opened stomata in both WT and npq1 mutant stomata but not in the phot1 phot2 double mutant. In npq1, blue light-stimulated opening was reversed by far-red but not green light, indicating that npq1 has a phytochrome-mediated response and lacks a blue light-specific response. Stomata of the phot1 phot2 double mutant opened in response to 20 to 50 micromol m-2 s-1 blue light. This opening was green light reversible and far-red light insensitive, indicating that stomata of the phot1 phot2 double mutant have a detectable blue light-specific response.  相似文献   

10.
Kim JH  Nemson JA  Melis A 《Plant physiology》1993,103(1):181-189
Mechanistic aspects of the photosystem II (PSII) damage and repair cycle in chloroplasts were investigated. The D1/32-kD reaction center protein of PSII (known as the psbA chloroplast gene product) undergoes a frequent light-dependent damage and turnover in the thylakoid membrane. In the model organism Dunaliella salina (green alga), growth under a limiting intensity of illumination (100 [mu]mol of photons m-2 s-1; low light) entails damage, degradation, and replacement of D1 every about 7 h. Growth under irradiance-stress conditions (2000 [mu]mol of photons m-2 s-1; high light) entails damage to and replacement of D1 about every 20 min. Thus, the rate of damage and repair of PSII appears to be proportional to the light intensity during plant growth. Low-light-grown cells do not possess the capacity for high rates of repair. Upon transfer of low-light-grown cells to high-light conditions, accelerated damage to reaction center proteins is followed by PSII disassembly and aggregation of neighboring reaction center complexes into an insoluble dimer form. The accumulation of inactive PSII centers that still contain the D1 protein suggests that the rate of D1 degradation is the rate-limiting step in the PSII repair cycle. Under irradiance-stress conditions, chloroplasts gradually acquire a greater capacity for repair. The induction of this phenomenon occurs with a half-time of about 24 h.  相似文献   

11.
不同光照强度和温度对金钗石斛生长的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
为了系统地研究不同光照强度下温度对金钗石斛(Dendrobium nobile)生长的影响,在金钗石斛分蘖期,于80μmol·m-2·s-1、160μmol·m-2·s-1、320μmol·m-2·s-1、640μmol·m-2·s-1的不同光强下,各设置5个温度(15℃、20℃、25℃、30℃、35℃)梯度对石斛进行处理。结果表明:石斛的生长与代谢随温度由低到高,表现出弱—强—弱的变化规律;80μmol·m-2·S-1光强下,石斛生长以25~30℃较为适宜;160μmol·m-2·s-1光强下则以20~25℃为适宜温度范围;320μmol·m-2·s-1与640μmol·m-2·s-1的中、强光照下,25℃处理石斛的生长优势尤为明显;不同光强下,石斛鲜重的增长大多以25℃处理更快,繁殖力则以20℃与25℃处理较高,各光强下的MDA含量随温度升高而先降后升,且均以25℃最低;可溶性蛋白质、可溶性总糖及叶绿素含量则表现出随温度由低到高而先增后减的趋势,其含量最高点均出现在25℃左右;净光合速率和叶绿素含量随光强和温度的变化趋势基本一致;各种光强下的暗呼吸速率均随温度升高而增大。因此,在不同的光照条件下,石斛生长的适宜温度均在25℃左右。光温处理引起石斛生理生化过程明显的相应变化表现出:高温和弱光照条件有利于石斛的株高增长,但不利于产量和质量提高;石斛的生长与MDA含量呈显著负相关(r80=-0.9082、r160=-0.9816、r320=-0.8075、r640=-0.8586),与可溶性糖含量呈一定正相关(r80=0.7673、r160=0.8892、r320=0.8179、r640=0.9278),并且石斛的生长与可溶性蛋白质含量、叶绿素含量、光合速率之间的变化趋势基本一致。  相似文献   

12.
13.
14.
15.
Three general classes of photomorphogenic photoreceptors have been characterized in higher plants: phytochrome, a blue light/ultraviolet (UV)-A photoreceptor(s), and a UV-B sensory system(s). Although a great deal is known about phytochrome and the blue light/UV-A photoreceptor(s), little is known about UV-B detection processes. One reason for this is the lack of readily quantifiable morphogenic responses that are specifically induced by UV-B radiation. We have discovered a response to UV-B, upward curling of Brassica napus L. cotyledons, that may be useful for probing the mechanism of UV-B photoreception. The process was initially observed when B. napus seeds were germinated under visible light plus UV-B radiation, but did not occur under visible light alone or visible light plus UV-A. When 5-d-old seedlings grown in visible light were given relatively short exposures of UV-B (100 min of 5.5 [mu]mol m-2 s-1), the curling response was also observed. Development of curling was separated from the application of this UV-B pulse by a 14-h latent period. Pulses of red light, blue light, farred light, and UV-A (100 min of 5.5 [mu]mol m-2 s-1) did not induce curling, indicating UV-B specificity Additionally, these other spectral regions did not reverse or enhance the UV-B-triggered response. The degree of curling showed a log-linear dependence on UV-B fluence (6-40 mmol m-2) and reciprocity with respect to length of exposure and fluence rate. The data indicate that curling is photomorphogenic in nature and may be triggered by a single photoreceptor species.  相似文献   

16.
孙谷畴   《广西植物》1987,(3):239-243
亚热带季雨林林下阴生植物罗伞(Ardisia quinquegona)叶片的气体交换速率(PN.μmol.m~(-2),s~(-1))随光强(PFD,μmol,m~(-2),s~(-1))增高而增大。在光强低于80μmol,m~(-2),s~(-1),PN=29.21PFD×10~(-3)+0.36。在光强150μmol,m~(-2),s~(-1)对出现气体交换的光饱和现象。在低光强下,气孔传导率(G,m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=265.6 PFD+4.6。在低光强下。开阔地的阳生灌木桃金娘(Rhodmyrtus tomentosa)的气体交换速率和气孔传导率与光强关系曲线的直线部分斜率皆较罗伞的低,在红光上,罗伞叶片气体交换速率(μmol,m~(-2),s~(-1)与光强(μmol,m~(-2),s~(-1)的关系为PN=32.4 PFD×10~(-3)-0.04。气孔传导率(m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=339.08 PFD+7.37。同时气体交换速率的饱和红光光强亦较白光的高。在蓝光光强低时,气体交换速率(μmol,m~(-2),s~(-1))与光强(μmol,m~(-2),s~(-1))的关系为PN=13.54 PFD×10~(-3)—0.17,而气孔传导率(m mol,m~(-2),s~(-1))与光强(mμmol,m~(-2),s~(-1))的关系为G=80.5 PFD+4.35。在低的蓝光下,体交换速率和气孔传导率与光强关系曲线的直线部分斜率显著较在白光和红光下的低。罗伞叶片气体交换对红光的反应敏感。  相似文献   

17.
18.
19.
以小麦品种‘烟优361’(Triticum aestivum L.cv.Yanyou 361)萌发4 d幼苗为试验材料,分析了草酸氧化酶(OxO)在幼苗中的定位和表达,以及光照强度处理对小麦幼苗OxO活性的影响。实验结果显示,萌发后小麦幼苗的OxO分布在子叶与根的连接处和成熟的根中,其活性随光照强度的增加而下降;200μmol.m-2.s-1的强光显著抑制了OxO活性,该处理培养4 d幼苗的OxO活性仅为40μmol.m-2.s-1光照培养条件下的18.7%;强光还缩短OxO在苗期的表达时间,抑制了OxO的mRNA表达量。同时,光照强度还能影响小麦幼苗中H2O2的含量,200μmol.m-2.s-1处理幼苗的H2O2的含量显著下降,其培养4 d的幼苗H2O2含量仅为40μmol.m-2.s-1光照强度培养条件下的18.0%。研究发现,光照强度可通过调节OxO的活性和表达量来控制H2O2的产量,从而影响幼苗的生长发育。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号