首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Woodhouse MR  Freeling M  Lisch D 《Genetics》2006,172(1):579-592
Transposons make up a sizable portion of most genomes, and most organisms have evolved mechanisms to silence them. In maize, silencing of the Mutator family of transposons is associated with methylation of the terminal inverted repeats (TIRs) surrounding the autonomous element and loss of mudrA expression (the transposase) as well as mudrB (a gene involved in insertional activity). We have previously reported that a mutation that suppresses paramutation in maize, mop1, also hypomethylates Mu1 elements and restores somatic activity to silenced MuDR elements. Here, we describe the progressive reactivation of silenced mudrA after several generations in a mop1 background. In mop1 mutants, the TIRA becomes hypomethylated immediately, but mudrA expression and significant somatic reactivation is not observed until silenced MuDR has been exposed to mop1 for several generations. In subsequent generations, individuals that are heterozygous or wild type for the Mop1 allele continue to exhibit hypomethylation at Mu1 and mudrA TIRs as well as somatic activity and high levels of mudrA expression. Thus, mudrA silencing can be progressively and heritably reversed. Conversely, mudrB expression is never restored, its TIR remains methylated, and new insertions of Mu elements are not observed. These data suggest that mudrA and mudrB silencing may be maintained via distinct mechanisms.  相似文献   

6.
7.
8.
9.
Mutator transposase is widespread in the grasses   总被引:5,自引:0,他引:5  
Although the Mutator (Mu) system is well characterized in maize (Zea mays), very little is known about this highly mutagenic system of transposons in other grasses. Mutator is regulated by the MuDR class of elements, which encodes two genes, one of which, mudrA, has similarity to a number of bacterial transposases. Experiments in our laboratory, as well as database searches, demonstrate that mudrA sequences are ubiquitous and diverse in the grasses. In several species it is clear that multiple paralogous elements can be present in a single genome. In some species such as wheat (Triticum aestivum) and rice (Oryza sativa), mudrA-similar sequences are represented in cDNA databases, suggesting the presence of active Mu transposon systems in these species. Further, in rice and in sorghum, mudrA-like genes are flanked by long terminal inverted repeats, as well as the short host sequence direct repeats diagnostic of insertion. Thus, there is ample evidence that systems related to Mu in maize are at least potentially active in a wide variety of grasses. However, the mudrB gene, though important for Mu activity in maize, is not necessarily a component of Mu elements in other grasses.  相似文献   

10.
11.
12.
13.
14.
15.
The autonomous MuDR element of the Mutator (Mu) transposable element family of maize encodes at least two proteins, MURA and MURB. Based on amino acid sequence similarity, previous studies have reported that MURA is likely to be a transposase. The functional characterization of MURA has been hindered by the instability of its cDNA, mudrA, in Escherichia coli. In this study, we report the first successful stabilization and expression of MURA in Saccharomyces cerevisiae. Gel mobility shift assays demonstrate that MURA is a DNA-binding protein that specifically binds to sequences within the highly conserved Mu element terminal inverted repeats (TIRs). DNase I and 1,10-phenanthroline-copper footprinting of MURA-Mu1 TIR complexes indicate that MURA binds to a conserved approximately 32-bp region in the TIR of Mu1. In addition, MURA can bind to the same region in the TIRs of all tested actively transposing Mu elements but binds poorly to the diverged Mu TIRs of inactive elements. Previous studies have reported a correlation between Mu transposon inactivation and methylation of the Mu element TIRs. Gel mobility shift assays demonstrate that MURA can interact differentially with unmethylated, hemimethylated, and homomethylated TIR substrates. The significance of MURA's interaction with the TIRs of Mu elements is discussed in the context of what is known about the regulation and mechanisms of Mutator activities in maize.  相似文献   

16.
17.
18.
19.
V. L. Chandler  L. E. Talbert    F. Raymond 《Genetics》1988,119(4):951-958
The increased mutation rate of Mutator stocks of maize has been shown to be the result of transposition of Mu elements. One element, Mu1, is present in 10-60 copies in Mutator stocks and approximately 0-3 copies in non-Mutator stocks. The sequence, structure and genomic distribution of an intact Mu1 element cloned from the non-Mutator inbred line B37 has been determined. The sequence of this element, termed Mu1.4-B37, is identical to Mu1 and it is flanked by 9-bp direct repeats indicative of a target site duplication. Mu1.4-B37 is not in the same genomic location in all stocks, which further suggests that it transposed into its genomic location in B37. We previously reported that in genomic DNA this element is modified such that certain methylation-sensitive restriction enzymes will not cut sites within the element. This is similar to that observed for Mu elements in Mutator stocks that have lost activity. We report herein that the Mu1.4-B37 element loses its modification and becomes accessible to digestion when placed in an active Mutator stock by genetic crosses. This suggests that factors conditioning unmodified elements are dominant in the initial cross between Mutator and non-Mutator stocks. In F2 individuals that have subsequently lost Mutator activity the Mu1.4-B37 element again becomes modified as do most of the Mu elements in the stock. Thus, the modification state of the Mu1.4-B37 element and the other Mu1-like elements correlates with Mutator activity. We hypothesize that factor(s) within an active Mutator stock may inhibit the modification of Mu elements, and that this activity is missing in non-Mutator stocks and may become limiting in certain Mutator stocks resulting in DNA modification.  相似文献   

20.
The high frequency of mutations in Mutator stocks of maize is the result of transposition of Mu elements. Nine different Mu elements that share the 220 bp Mu terminal inverted repeats have been described. Mu1 elements have been found inserted into most of the molecularly characterized mutant alleles isolated from Mutator stocks, and most Mutator stocks contain a high number of Mu1 elements (10-60). However, it is clear that additional Mu elements, which share the Mu1 termini but have unrelated internal sequences, can also transpose in Mutator stocks. We were interested in comparing the mutation frequency and type of elements that inserted into a particular locus when Mutator stocks with differing numbers of Mu1 elements were utilized. Furthermore, previous studies with Mu-induced mutations have demonstrated that the element that inserted most frequently was Mu1. Therefore, to try to obtain Mu elements different from Mu1 we utilized a stock that had a low number (3-6) of Mu1 elements as well as a Mutator stock with a more typical number of Mu1 elements (20-60). Utilizing both stocks, we isolated numerous mutants at one gene, Bronze 1 (Bz1), and compared the type of elements inserted. In this paper we report that both the high and low Mu1 stocks produced bz1 mutants at frequencies characteristic of Mutator stocks, 6.6 and 4.3 x 10(-5), respectively. We describe the isolation of 20 bz1 mutations, and the initial molecular characterization of eight unstable mutations: two from the high Mu1 stock and six from the low Mu1 stock. The six alleles isolated from the low Mu1 stock appear to contain deleted Mu1 elements, and the two alleles isolated from the high Mu1 stock contain elements very similar to Mu1. When the mutants from the low Mu1 stocks were examined, it was found that the Mu1-related elements increased from 3-6 copies to 9-20 copies in one generation. The high number of Mu1-related elements was maintained in subsequent outcrosses. This spontaneous activation and amplification of Mu1-related elements occurred in at least 1% of the low Mu1 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号